268 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			268 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
    LA: linear algebra C++ interface library
 | 
						|
    Copyright (C) 2008 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
 | 
						|
			based on a routine originally written by Markus Warken <markus.warken@nsn.com>
 | 
						|
 | 
						|
    This program is free software: you can redistribute it and/or modify
 | 
						|
    it under the terms of the GNU General Public License as published by
 | 
						|
    the Free Software Foundation, either version 3 of the License, or
 | 
						|
    (at your option) any later version.
 | 
						|
 | 
						|
    This program is distributed in the hope that it will be useful,
 | 
						|
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
    GNU General Public License for more details.
 | 
						|
 | 
						|
    You should have received a copy of the GNU General Public License
 | 
						|
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
*/
 | 
						|
#ifndef _GMRES_H
 | 
						|
#define _GMRES_H
 | 
						|
#include "vec.h"
 | 
						|
#include "smat.h"
 | 
						|
#include "mat.h"
 | 
						|
#include "sparsemat.h"
 | 
						|
#include "nonclass.h"
 | 
						|
#include <iomanip>
 | 
						|
#include "auxstorage.h"
 | 
						|
 | 
						|
namespace LA {
 | 
						|
 | 
						|
//GMRES solution of a linear system
 | 
						|
 | 
						|
//matrix can be any class which has nrows(), ncols(), diagonalof() and gemv() available
 | 
						|
//does not even have to be explicitly stored
 | 
						|
 | 
						|
 | 
						|
/* GMRES-Algorithmus nach Schwarz, S. 552, original impl. M. Warken */
 | 
						|
/* allows zeilen!= spalten*/
 | 
						|
/* Matrix can be any class which provides nrows(), ncols(), gemv(), and diagonalof(), does not have to store elements explicitly */
 | 
						|
 | 
						|
template<class T>
 | 
						|
void gmres_backsubstitute(const NRMat<T> &R, NRVec<T> &c, const NRVec<T> &d, const int k)
 | 
						|
{
 | 
						|
c.copyonwrite();
 | 
						|
if(R(k,k)==0.) laerror("singular matrix in gmres triangular solution");
 | 
						|
c[k] = d[k]/R(k,k);
 | 
						|
for (int i=k-1;i>=0;i--) c[i] = (d[i]-xdot(k-i,&R(i,i+1),1,&c[i+1],1)) / R(i,i);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//x contains ev. initial guess and on return the solution
 | 
						|
template<typename T, typename Matrix>
 | 
						|
bool gmres(const Matrix &bigmat, const NRVec<T> &b, NRVec<T> &x, const bool doguess=1, const double eps=1e-7, const int MAXIT=50, const bool verbose=1, bool square=1,const bool precondition=1, int neustart=0, const int incore=1)
 | 
						|
{
 | 
						|
int zeilen=bigmat.nrows();
 | 
						|
int spalten=bigmat.ncols();
 | 
						|
if(spalten==1) laerror("gmres does not work for n==1, use conjgrad if you need this trivial case");
 | 
						|
if(x.size()!=spalten || b.size() != zeilen) laerror("incompatible vectors and matrix sizes in GMRES");
 | 
						|
 | 
						|
if(zeilen!=spalten) square=0;
 | 
						|
if(!neustart)  neustart = zeilen/10;
 | 
						|
if (neustart < 10) neustart = 10;
 | 
						|
x.copyonwrite();
 | 
						|
 | 
						|
bool flag;
 | 
						|
double beta,beta_0;
 | 
						|
double d_alt=0;
 | 
						|
 | 
						|
AuxStorage<T> *st;
 | 
						|
NRVec<T> *v;
 | 
						|
NRVec<T> r_k(spalten),z(spalten);
 | 
						|
NRVec<T> cci(MAXIT+1),ssi(MAXIT+1),c(MAXIT+1),d(MAXIT+1);
 | 
						|
NRMat<T> H(MAXIT+1,MAXIT+1);
 | 
						|
T ci,si;
 | 
						|
v = new NRVec<T>[incore?MAXIT+1:1];
 | 
						|
st = incore?NULL:new AuxStorage<T>;
 | 
						|
 | 
						|
if(doguess) 
 | 
						|
	{
 | 
						|
	bigmat.gemv(0,x,'t',-1.,b); //x.gemv(0,bigmat,'t',-1.,b);
 | 
						|
        if(precondition) bigmat.diagonalof(x,true);
 | 
						|
	x.normalize();
 | 
						|
	}
 | 
						|
 | 
						|
neustart:
 | 
						|
for (int l=0;l<neustart;l++)  // main loop for restarts
 | 
						|
	{
 | 
						|
	if(square) // r_0 = b + A x_0
 | 
						|
		{
 | 
						|
		bigmat.gemv(0,r_k,'n',1,x); //r_k.gemv(0,bigmat,'n',1,x);
 | 
						|
		r_k -= b;
 | 
						|
		}
 | 
						|
	else //r_0 = A^t b + A^t A x_0
 | 
						|
		{
 | 
						|
		NRVec<T> dum(zeilen);
 | 
						|
		bigmat.gemv(0,dum,'n',1,x); //dum.gemv(0,bigmat,'n',1,x);
 | 
						|
		bigmat.gemv(0,r_k,'t',1,dum); //r_k.gemv(0,bigmat,'t',1,dum);
 | 
						|
		bigmat.gemv(0,z,'t',-1.,b); //z.gemv(0,bigmat,'t',-1.,b);
 | 
						|
	 	r_k += z; 
 | 
						|
		}
 | 
						|
 | 
						|
         if(precondition) bigmat.diagonalof(r_k,true);
 | 
						|
 | 
						|
         beta = r_k.norm();
 | 
						|
	 if(l==0) beta_0 = beta;
 | 
						|
	 v[0] = r_k* (1./beta);
 | 
						|
	 if(!incore) st->put(v[0],0);
 | 
						|
 | 
						|
         // Iteration
 | 
						|
	 for (int k=0;k<MAXIT;k++) 
 | 
						|
		{
 | 
						|
		// *iter=l*MAXIT+k;
 | 
						|
         	//if(dowarn) if (l>0) fprintf(stderr,"gmres: restart %d\n",l);
 | 
						|
 | 
						|
	    	// Schritt 1
 | 
						|
		if(!incore) st->get(v[0],k);
 | 
						|
	        if(square)
 | 
						|
                	{
 | 
						|
			bigmat.gemv(0,z,'n',1,v[incore?k:0]); //z.gemv(0,bigmat,'n',1,v[incore?k:0]);
 | 
						|
                	}
 | 
						|
		else
 | 
						|
			{
 | 
						|
			NRVec<T> dum(zeilen);
 | 
						|
			bigmat.gemv(0,dum,'n',1,v[incore?k:0]); //dum.gemv(0,bigmat,'n',1,v[incore?k:0]);
 | 
						|
			bigmat.gemv(0,z,'t',1,dum); //z.gemv(0,bigmat,'t',1,dum);
 | 
						|
			}
 | 
						|
              	if(precondition) bigmat.diagonalof(z,true);
 | 
						|
 | 
						|
	        //Schritte 2 und 3
 | 
						|
	        for (int i=0;i<=k;i++) 
 | 
						|
			{
 | 
						|
			if(!incore) st->get(v[0],i);
 | 
						|
			H(i,k) = z*v[incore?i:0];
 | 
						|
			z.axpy(-H(i,k),v[incore?i:0]);
 | 
						|
	      		}
 | 
						|
 | 
						|
		//Schritt 4
 | 
						|
		double tmp;
 | 
						|
	    	H(k+1,k) = tmp= z.norm();
 | 
						|
	    	if(tmp < 1.e-2*eps )
 | 
						|
			{
 | 
						|
	    		if(verbose) std::cerr <<("gmres restart performed\n");
 | 
						|
	       		// Abbruchbedingung, konstruiere x_k
 | 
						|
	       		for (int i=0;i<k;i++) 
 | 
						|
				{
 | 
						|
		  		ci = cci[i];si = ssi[i];
 | 
						|
		  		for (int j=0;j<k;j++) 
 | 
						|
					{
 | 
						|
		     			T a = H(i,j);
 | 
						|
		     			H(i,j) = ci*a+si*H(i+1,j);
 | 
						|
		     			H(i+1,j) = -si*a+ci*H(i+1,j);
 | 
						|
		  		}
 | 
						|
	       				}
 | 
						|
	       		// Loese R_k c = - d_k
 | 
						|
			d *= -1.;
 | 
						|
	       		gmres_backsubstitute(H,c,d,k-1);
 | 
						|
	       		for (int i=0;i<k-1;i++) 
 | 
						|
				{
 | 
						|
				if(!incore) st->get(v[0],i);
 | 
						|
				x.axpy(c[i],v[incore?i:0]);
 | 
						|
				}
 | 
						|
	       		flag=0; goto neustart;
 | 
						|
	    		} // Ende Abbruch
 | 
						|
 | 
						|
	   	v[incore?k+1:0] = z * (1./H(k+1,k));
 | 
						|
		if(!incore) st->put(v[0],k+1);
 | 
						|
 | 
						|
	        // Schritt 5  - berechne Phi_k
 | 
						|
	    	for (int j=0;j<k+2;j++) d[j] = H(j,k);
 | 
						|
	    	for (int i=0;i<k;i++) 
 | 
						|
			{
 | 
						|
                  	ci = cci[i];
 | 
						|
			si = ssi[i];
 | 
						|
		   	T a = d[i];
 | 
						|
		   	d[i] = ci*a+si*d[i+1];
 | 
						|
		   	d[i+1] = -si*a+ci*d[i+1];
 | 
						|
	    		}
 | 
						|
	    	//phi[k]= atan(d[k+1]/d[k]);
 | 
						|
	    	ci=hypot(d[k],d[k+1]); 
 | 
						|
		cci[k]=d[k]/ci; 
 | 
						|
		ssi[k]=d[k+1]/ci;
 | 
						|
 | 
						|
	    	//berechne neuen d-Vektor
 | 
						|
		d= 0.;
 | 
						|
	    	d[0]=beta; 
 | 
						|
	    	for (int i=0;i<=k;i++) 
 | 
						|
			{
 | 
						|
                  	ci = cci[i];si = ssi[i];
 | 
						|
		 	T a = d[i];
 | 
						|
		 	d[i] = ci*a+si*d[i+1];
 | 
						|
		 	d[i+1] = -si*a+ci*d[i+1];
 | 
						|
	    		}
 | 
						|
 | 
						|
	    	//Schritt 6: Konvergenz?
 | 
						|
	    	if(verbose) 
 | 
						|
			{
 | 
						|
			std::cout << "gmres iter "<<l<<" "<<k<<" resid "
 | 
						|
		<<std::setw(0)<<std::setiosflags(std::ios::scientific)<<std::setprecision(8)
 | 
						|
		<<std::abs(d[k+1])<< " thr "<<eps*beta_0<< " reduction "
 | 
						|
		<<std::setw(5)<<std::setprecision(2)<<std::resetiosflags(std::ios::scientific)
 | 
						|
		<<(d_alt - std::abs(d[k+1]))/d_alt*100<< "\n" <<std::setprecision(12);
 | 
						|
			std::cout.flush();
 | 
						|
			}
 | 
						|
		
 | 
						|
		d_alt = abs(d[k+1]);
 | 
						|
            	//*err= d_alt;
 | 
						|
	    	if (d_alt < eps*beta_0) 
 | 
						|
			{
 | 
						|
	       		// konstruiere R_k
 | 
						|
	       		for (int i=0;i<k;i++) 
 | 
						|
				{
 | 
						|
                  		ci = cci[i];
 | 
						|
				si = ssi[i];
 | 
						|
		    		for (int j=0;j<k;j++)
 | 
						|
					{
 | 
						|
			 		T a = H(i,j);
 | 
						|
			 		H(i,j) = ci*a+si*H(i+1,j);
 | 
						|
			 		H(i+1,j) = -si*a+ci*H(i+1,j);
 | 
						|
		    			} 
 | 
						|
	       			} 
 | 
						|
 | 
						|
	       		// Loese R_k c = - d_k 
 | 
						|
			d *= -1.;
 | 
						|
	       		gmres_backsubstitute(H,c,d,k-1);
 | 
						|
	       		for(int i=0;i<k;i++) 
 | 
						|
				{
 | 
						|
				if(!incore) st->get(v[0],i);
 | 
						|
				x.axpy(c[i],v[incore?i:0]);
 | 
						|
				}
 | 
						|
	       		flag=0; goto myreturn;
 | 
						|
	    		}
 | 
						|
         	} // k-Schleife
 | 
						|
 | 
						|
	 // zum Neustart: Konstruiere R_k 
 | 
						|
	 for (int i=0;i<MAXIT;i++) 
 | 
						|
		{
 | 
						|
                ci = cci[i];si = ssi[i];
 | 
						|
	     	for (int j=0;j<MAXIT;j++)
 | 
						|
			{
 | 
						|
		 	T a = H(i,j);
 | 
						|
		 	H(i,j) = ci*a+si*H(i+1,j);
 | 
						|
		 	H(i+1,j) = -si*a+ci*H(i+1,j);
 | 
						|
	     		}
 | 
						|
	 	}
 | 
						|
 | 
						|
	// Loese R_k c = - d_k
 | 
						|
	d *= -1.;
 | 
						|
	gmres_backsubstitute(H,c,d,MAXIT-1);
 | 
						|
	for(int i=0;i<MAXIT;i++)
 | 
						|
		{
 | 
						|
                if(!incore) st->get(v[0],i);
 | 
						|
                x.axpy(c[i],v[incore?i:0]);
 | 
						|
                }
 | 
						|
 | 
						|
      	} // l schleife
 | 
						|
flag=1;
 | 
						|
 | 
						|
myreturn:
 | 
						|
delete[] v;
 | 
						|
if(!incore) delete st;
 | 
						|
 | 
						|
return !flag;
 | 
						|
}
 | 
						|
 | 
						|
}//namespace
 | 
						|
 | 
						|
#endif
 |