607 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			607 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|     LA: linear algebra C++ interface library
 | |
|     Copyright (C) 2008 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
 | |
| 
 | |
|     This program is free software: you can redistribute it and/or modify
 | |
|     it under the terms of the GNU General Public License as published by
 | |
|     the Free Software Foundation, either version 3 of the License, or
 | |
|     (at your option) any later version.
 | |
| 
 | |
|     This program is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|     GNU General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU General Public License
 | |
|     along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
| */
 | |
| 
 | |
| #ifndef _SPARSESMAT_H_
 | |
| #define _SPARSESMAT_H_
 | |
| 
 | |
| #include <string>
 | |
| #include <cmath>
 | |
| #include <stdlib.h>
 | |
| #include <sys/types.h>
 | |
| #include <sys/stat.h>
 | |
| #include <fcntl.h>
 | |
| #include <errno.h>
 | |
| #include "la_traits.h"
 | |
| #include "sparsemat.h"
 | |
| #include "vec.h"
 | |
| #include "mat.h"
 | |
| #include "smat.h"
 | |
| #include "qsort.h"
 | |
| 
 | |
| #include <map>
 | |
| #include <list>
 | |
| 
 | |
| #define CHOLESKYEPSILON 1e-16
 | |
| 
 | |
| namespace LA {
 | |
| 
 | |
| //symmetric sparse matrix class with a representation for efficient exponentiatiation
 | |
| //in particular we need a unitary symmetric complex matrix as exp(iH) with H real symmetric
 | |
| //indices are counted from zero
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| class SparseSMat
 | |
| {
 | |
| protected:
 | |
| 	SPMatindex nn;
 | |
| 	SPMatindex mm;
 | |
| 	std::map<SPMatindex,T> **v;
 | |
| 	int *count;
 | |
| public:
 | |
| 	SparseSMat() : nn(0), mm(0), v(NULL), count(NULL) {};
 | |
| 	explicit SparseSMat(const SPMatindex n, const SPMatindex m); //prevent double -> int -> SparseSMat
 | |
| 	explicit SparseSMat(const SPMatindex n);
 | |
| 	SparseSMat(const SparseSMat &rhs);
 | |
| 	explicit SparseSMat(const SparseMat<T> &rhs);
 | |
| 	explicit SparseSMat(const NRSMat<T> &rhs);
 | |
| 	explicit SparseSMat(const NRMat<T> &rhs);
 | |
| 	explicit SparseSMat(const CSRMat<T> &rhs);
 | |
| 	SparseSMat & operator=(const SparseSMat &rhs);
 | |
| 	void copyonwrite();
 | |
|         void resize(const SPMatindex nn, const SPMatindex mm);
 | |
|    	void dealloc(void) {resize(0,0);}
 | |
| 	inline void setcoldim(int i) {mm=(SPMatindex)i;};
 | |
| 	//std::map<SPMatindex,T> *line(SPMatindex n) const {return v[n];};
 | |
| 	typedef std::map<SPMatindex,T> *ROWTYPE;
 | |
| 	inline typename SparseSMat<T>::ROWTYPE & operator[](const SPMatindex i) {return v[i];}; 
 | |
|         void clear() {resize(nn,mm);}
 | |
| 	unsigned long long simplify();
 | |
| 	~SparseSMat();
 | |
| 	inline int getcount() const {return count?*count:0;}
 | |
|         SparseSMat & operator*=(const T &a);         //multiply by a scalar
 | |
|         inline const SparseSMat operator*(const T &rhs) const {return SparseSMat(*this) *= rhs;}
 | |
| 	inline const SparseSMat operator+(const T &rhs) const {return SparseSMat(*this) += rhs;}
 | |
|         inline const SparseSMat operator-(const T &rhs) const {return SparseSMat(*this) -= rhs;}
 | |
|         inline const SparseSMat operator+(const SparseSMat &rhs) const {return SparseSMat(*this) += rhs;} 
 | |
|         inline const SparseSMat operator-(const SparseSMat &rhs) const {return SparseSMat(*this) -= rhs;}
 | |
|         SparseSMat & operator=(const T &a);          //assign a to diagonal
 | |
|         SparseSMat & operator+=(const T &a);         //assign a to diagonal
 | |
|         SparseSMat & operator-=(const T &a);         //assign a to diagonal
 | |
| 	void axpy(const T alpha, const SparseSMat &x, const bool transp=0); // this+= a*x
 | |
|         inline SparseSMat & operator+=(const SparseSMat &rhs) {axpy((T)1,rhs); return *this;};
 | |
|         inline SparseSMat & operator-=(const SparseSMat &rhs) {axpy((T)-1,rhs); return *this;};
 | |
| 	const T* diagonalof(NRVec<T> &, const bool divide=0, bool cache=false) const; //get diagonal
 | |
| 	void gemv(const T beta, NRVec<T> &r, const char trans, const T alpha, const NRVec<T> &x) const;
 | |
| 	inline const NRVec<T> operator*(const NRVec<T> &rhs) const {NRVec<T> result(nn); this->gemv((T)0,result,'n',(T)1,rhs); return result;};
 | |
| 	typename LA_traits<T>::normtype norm(const T scalar=(T)0) const;
 | |
|         inline const SparseSMat operator*(const SparseSMat &rhs) const {SparseSMat<T> r(nn,mm); r.gemm(0,*this,'n',rhs,'n',1); return r;}; //!!!NOT A GENERAL ROUTINE, JUST FOR THE CASES WHEN THE RESULT STAYS SYMMETRIC
 | |
| 	void gemm(const T beta, const SparseSMat &a, const char transa, const SparseSMat &b, const char transb, const T alpha); //this := alpha*op( A )*op( B ) + beta*this !!!NOT A GENERAL ROUTINE, JUST FOR THE CASES WHEN THE RESULT STAYS SYMMETRIC
 | |
| 	inline void add(const SPMatindex n, const SPMatindex m, const T elem, const bool both=true);
 | |
| 	inline unsigned long long length() {return simplify();};
 | |
| 	void transposeme() const {laerror("in-place transposition not necessary/implemented for SparseSMat");};
 | |
| 	SparseSMat transpose(bool conj=false) const; //if we store a non-symmetric matrix there
 | |
|         inline bool issymmetric() const {return true;} // LV: for davidson
 | |
| 	void get(int fd, bool dimen, bool transp);
 | |
|         void put(int fd, bool dimen, bool transp) const;
 | |
| 	int nrows() const {return nn;}
 | |
| 	int ncols() const {return mm;}
 | |
| 	SparseSMat<T>  cholesky(void) const;
 | |
| 	SparseSMat submatrix(const int fromrow, const int torow, const int fromcol, const int tocol) const;
 | |
| 	void storesubmatrix(const int fromrow, const int fromcol, const SparseSMat &rhs);
 | |
| 
 | |
| 	class iterator {//not efficient, just for output to ostreams
 | |
|         private:
 | |
|                 matel<T> *p;
 | |
| 		matel<T> my;
 | |
| 		SPMatindex row;
 | |
| 		typename std::map<SPMatindex,T>::iterator *col;
 | |
| 		typename std::map<SPMatindex,T>::iterator mycol;
 | |
| 		SPMatindex mynn;
 | |
| 		SPMatindex mymm;
 | |
| 		std::map<SPMatindex,T> **myv;
 | |
| 		
 | |
| 
 | |
|         public:
 | |
| 		//compiler-generated iterator & operator=(const  iterator &rhs); 
 | |
| 		//compiler-generated iterator(const iterator &rhs); 
 | |
|                 iterator(): p(NULL),row(0),col(NULL),mynn(0),mymm(0),myv(NULL) {};
 | |
|                 iterator(const SparseSMat &rhs) : mynn(rhs.nn), mymm(rhs.mm), myv(rhs.v), col(NULL) {row=0; p= &my; operator++();}
 | |
|                 iterator operator++()  {
 | |
| 					if(col) //finish column list
 | |
| 						{
 | |
| 						++mycol;
 | |
| 						if(mycol != myv[row]->end())
 | |
| 							{
 | |
| 							p->row = row;
 | |
| 							p->col = mycol->first;
 | |
| 							p->elem = mycol->second;
 | |
| 							return *this;
 | |
| 							}
 | |
| 						else
 | |
| 							{
 | |
| 							col=NULL;
 | |
| 							++row; if(row==mynn) {p=NULL; return *this;} //end()
 | |
| 							}	
 | |
| 						}
 | |
| 				      	nextrow: 
 | |
| 					while(myv[row]==NULL) {++row; if(row==mynn) {p=NULL; return *this;}} //end()
 | |
| 
 | |
| 					//we are at next nonempty row
 | |
| 					col = &mycol;
 | |
| 					mycol = myv[row]->begin();
 | |
| 					if(mycol == myv[row]->end()) 	{col=NULL; 
 | |
| 									++row; 
 | |
| 									if(row==mynn) {p=NULL; return *this;} else goto nextrow;
 | |
| 									} 
 | |
| 					//first column of new row
 | |
| 					p->row = row;
 | |
|                                         p->col = mycol->first;
 | |
|                                         p->elem = mycol->second;
 | |
| 					return *this;
 | |
| 					};
 | |
| 		iterator(matel<T> *q) {p=q; col=NULL;}//just for end()
 | |
|                 //compiler-generated ~iterator() {};
 | |
|                 bool operator!=(const iterator &rhs) const {return p!=rhs.p;} //only for comparison with end()
 | |
|                 bool operator==(const iterator &rhs) const {return p==rhs.p;} //only for comparison with end()
 | |
|                 matel<T> & operator*() const {return *p;}
 | |
|                 matel<T> * operator->() const {return p;}
 | |
| 		bool notend() const {return (bool)p;};
 | |
|         };
 | |
|         iterator begin() const {return iterator(*this);}
 | |
|         iterator end() const {return iterator(NULL);}
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| SparseSMat<T>::SparseSMat(const SPMatindex n)
 | |
| :nn(n), mm(n),
 | |
| count(new int(1))
 | |
| {
 | |
| v= new std::map<SPMatindex,T> * [n];
 | |
| memset(v,0,nn*sizeof(std::map<SPMatindex,T> *));
 | |
| }
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| SparseSMat<T>::SparseSMat(const SPMatindex n, const SPMatindex m)
 | |
| :nn(n), mm(m),
 | |
| count(new int(1))
 | |
| {
 | |
| v= new std::map<SPMatindex,T> * [n];
 | |
| memset(v,0,nn*sizeof(std::map<SPMatindex,T> *));
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| SparseSMat<T>::SparseSMat(const NRSMat<T> &rhs)
 | |
| :nn(rhs.nrows()), mm(rhs.ncols()),
 | |
| count(new int(1))
 | |
| {
 | |
| v= new std::map<SPMatindex,T> * [nn];
 | |
| memset(v,0,nn*sizeof(std::map<SPMatindex,T> *));
 | |
| int i,j;
 | |
| for(i=0; i<nn; ++i) for(j=0; j<=i; ++j) if(std::abs(rhs(i,j))>SPARSEEPSILON) (*this).add(i,j,rhs(i,j),true);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| SparseSMat<T>::SparseSMat(const NRMat<T> &rhs)
 | |
| :nn(rhs.nrows()), mm(rhs.ncols()),
 | |
| count(new int(1))
 | |
| {
 | |
| if(rhs.nrows()!=rhs.ncols()) laerror("non-square matrix in SparseSMat constructor from NRMat");
 | |
| v= new std::map<SPMatindex,T> * [nn];
 | |
| memset(v,0,nn*sizeof(std::map<SPMatindex,T> *));
 | |
| int i,j;
 | |
| for(i=0; i<nn; ++i) for(j=0; j<mm; ++j) if(std::abs(rhs(i,j))>SPARSEEPSILON) (*this).add(i,j,rhs(i,j),false);
 | |
| }
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| SparseSMat<T>::SparseSMat(const SparseSMat &rhs)
 | |
| {
 | |
| v = rhs.v;
 | |
| nn = rhs.nn;
 | |
| mm = rhs.mm;
 | |
| count = rhs.count;
 | |
| if(count) (*count)++;
 | |
| }
 | |
| 
 | |
| //NRSMat from SparseSMat
 | |
| #define nn2 (nn*(nn+1)/2)
 | |
| template <typename T>
 | |
| NRSMat<T>::NRSMat(const SparseSMat<T> &rhs)
 | |
| : nn(rhs.nrows())
 | |
| {
 | |
| if(rhs.nrows()!=rhs.ncols()) laerror("cannot transform rectangular matrix to NRSMat");
 | |
| #ifdef CUDALA
 | |
|         location = cpu;
 | |
| #endif
 | |
| count = new int(1);
 | |
| v=new T[nn2];
 | |
| memset(v,0,nn2*sizeof(T));
 | |
| typename SparseSMat<T>::iterator p(rhs);
 | |
| for(; p.notend(); ++p) if(p->row <= p->col) (*this)(p->row,p->col)=p->elem;
 | |
| }
 | |
| #undef nn2
 | |
| 
 | |
| 
 | |
| //construct dense from sparse
 | |
| template <typename T>
 | |
| NRMat<T>::NRMat(const SparseSMat<T> &rhs) :
 | |
| nn(rhs.nrows()),
 | |
| mm(rhs.ncols()),
 | |
| count(new int(1))
 | |
| {
 | |
| #ifdef CUDALA
 | |
|         location = cpu;
 | |
| #endif
 | |
| #ifdef MATPTR
 | |
|         v = new T*[nn];
 | |
|         v[0] = new T[mm*nn];
 | |
|         for (int i=1; i<nn; i++) v[i] = v[i-1] + mm;
 | |
| #else
 | |
|         v = new T[mm*nn];
 | |
| #endif
 | |
| memset(&(*this)(0,0),0,mm*nn*sizeof(T));
 | |
| typename SparseSMat<T>::iterator p(rhs);
 | |
| for(; p.notend(); ++p) (*this)(p->row,p->col)= p->elem;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| SparseSMat<T>::~SparseSMat()
 | |
| {
 | |
|         if(!count) return;
 | |
|         if(--(*count) <= 0) {
 | |
|                 if(v) 
 | |
|                         {
 | |
|                         for(SPMatindex i=0; i<nn; ++i) if(v[i]) delete v[i];
 | |
|                         delete[] (v);
 | |
|                         }
 | |
|                 delete count;
 | |
|         }
 | |
| }
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| void SparseSMat<T>::resize(const SPMatindex n, const SPMatindex m)
 | |
| {
 | |
| if(!count) 
 | |
| 	{
 | |
| 	if(n==0) return;
 | |
| 	count = new int(1);
 | |
| 	nn=n;
 | |
| 	mm=m;
 | |
| 	v= new std::map<SPMatindex,T> * [nn];
 | |
|         for(SPMatindex i=0; i<nn; ++i) v[i]=NULL;
 | |
| 	return;
 | |
| 	}
 | |
| 
 | |
| if(*count > 1) //it was shared
 | |
|   {
 | |
|     (*count)--;
 | |
|     if(n) 
 | |
| 	{
 | |
|         count = new int(1);
 | |
| 	nn=n;
 | |
| 	mm=m;
 | |
| 	v= new std::map<SPMatindex,T> * [nn];
 | |
|         for(SPMatindex i=0; i<nn; ++i) v[i]=NULL;
 | |
| 	}
 | |
|      else {v=NULL; nn=0; mm=0; count=NULL;}
 | |
|   }
 | |
| else  //it was not shared
 | |
| 	{
 | |
| 	mm=m;
 | |
| 	//delete all trees
 | |
| 	for(SPMatindex i=0; i<nn; ++i) if(v[i]) {delete v[i]; v[i]=NULL;}
 | |
| 	if(n!=nn)
 | |
| 		{
 | |
| 		nn=n;
 | |
| 		for(SPMatindex i=0; i<nn; ++i) v[i]=NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| SparseSMat<T> & SparseSMat<T>::operator=(const SparseSMat &rhs)
 | |
| {
 | |
|   if (this != &rhs)
 | |
|   {
 | |
|     if(count)
 | |
|       if(--(*count) == 0)
 | |
|       {
 | |
| 	if(v) 
 | |
|                         {
 | |
|                         for(SPMatindex i=0; i<nn; ++i) if(v[i]) delete v[i];
 | |
|                         delete[] (v);
 | |
|                         }
 | |
|         delete count;
 | |
|       }
 | |
|     v = rhs.v;
 | |
|     nn = rhs.nn;
 | |
|     mm = rhs.mm;
 | |
|     count = rhs.count;
 | |
|     if(count) (*count)++;
 | |
|   }
 | |
| return *this;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| void SparseSMat<T>::copyonwrite()
 | |
| {
 | |
|   if(!count) laerror("SparseSmat::copyonwrite() of an undefined object");
 | |
|   if(*count > 1)
 | |
|   {
 | |
|     (*count)--;
 | |
|     count = new int;
 | |
|     *count = 1;
 | |
|     typename std::map<SPMatindex,T> **newv= new std::map<SPMatindex,T> * [nn];
 | |
|     for(SPMatindex i=0; i<nn; ++i) if(v[i])
 | |
| 		newv[i]= new typename std::map<SPMatindex,T>(*(v[i])); //deep copy of each map
 | |
| 	else
 | |
| 		newv[i]= NULL;
 | |
|     v = newv;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| void SparseSMat<T>::add(const SPMatindex n, const SPMatindex m, const T elem, const bool both)
 | |
| {
 | |
| #ifdef DEBUG
 | |
| if(n>=nn || m>=mm) laerror("illegal index in SparseSMat::add()");
 | |
| #endif
 | |
| if(!v[n]) v[n] = new std::map<SPMatindex,T>;
 | |
| 
 | |
| typename std::map<SPMatindex,T>::iterator p;
 | |
| 
 | |
| p= v[n]->find(m);
 | |
| if(p!=v[n]->end()) p->second+=elem; else (*v[n])[m] = elem;
 | |
| if(n!=m && both) //add also transposed
 | |
| 	{
 | |
| 	if(!v[m]) v[m] = new std::map<SPMatindex,T>;
 | |
| 	p= v[m]->find(n);
 | |
| 	if(p!=v[m]->end()) p->second+=elem; else (*v[m])[n] = elem;
 | |
| 	}
 | |
| //addition can lead to zero, but do not treat it now, make a simplify
 | |
| }
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| unsigned long long SparseSMat<T>::simplify()
 | |
| {
 | |
| unsigned long long count=0;
 | |
| for(SPMatindex i=0; i<nn; ++i) if(v[i])
 | |
| 	{
 | |
| 	//check for zero elements and erase them from the list
 | |
| 	//build a list since we are not sure whether erase from within the traversal loop is safe
 | |
| 	std::list<SPMatindex> l;
 | |
| 	typename std::map<SPMatindex,T>::iterator p;
 | |
| 	for(p=v[i]->begin(); p!=v[i]->end(); ++p) 
 | |
| 	if(std::abs(p->second) < SPARSEEPSILON) l.push_front(p->first); else ++count;
 | |
| 	typename std::list<SPMatindex>::iterator q;	
 | |
| 	for(q=l.begin(); q!=l.end(); ++q) v[i]->erase(*q);	
 | |
| 	if(v[i]->size() == 0) {delete v[i]; v[i]=NULL;}
 | |
| 	}
 | |
| return count;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| std::ostream & operator<<(std::ostream &s, const SparseSMat<T> &x)
 | |
| {
 | |
| SPMatindex n;
 | |
| 
 | |
| s << x.nrows() << " "<< x.ncols()<< std::endl;
 | |
| 
 | |
| typename SparseSMat<T>::iterator p(x);
 | |
| for(; p.notend(); ++p) s << (int)p->row << ' ' << (int)p->col  << ' ' << (typename LA_traits_io<T>::IOtype) p->elem << '\n';
 | |
| s << "-1 -1\n";
 | |
| return s;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| std::istream& operator>>(std::istream  &s, SparseSMat<T> &x)
 | |
| 	{
 | |
| 	SPMatindex n,m;
 | |
| 	long i,j;
 | |
| 	s >> n >> m;
 | |
| 	if(n!=m) laerror("SparseSMat must be square");
 | |
| 	x.resize(n,m);
 | |
| 	s >> i >> j;
 | |
| 	typename LA_traits_io<T>::IOtype tmp;
 | |
| 	while(i>=0 && j>=0)
 | |
| 		{
 | |
| 		s>>tmp;
 | |
| 		if(i>=n||j>=m) laerror("bad index in SparseSMat::operator>>");
 | |
| 		x.add(i,j,tmp,false); 
 | |
|                         s >> i >> j;
 | |
|                         }
 | |
|                 return s;
 | |
|                 }
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| SparseSMat<T>  SparseSMat<T>::transpose(bool conj) const
 | |
| {
 | |
| SparseSMat<T> r(mm,nn);
 | |
| typename SparseSMat<T>::iterator p(*this);
 | |
| for(; p.notend(); ++p) r.add(p->col, p->row, (conj?LA_traits<T>::conjugate(p->elem):p->elem), false);
 | |
| return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //Cholesky decomposition, pivoted, positive semidefinite, not in place
 | |
| //it is NOT checked that the input matrix is symmetric/hermitean
 | |
| //result.transpose(true)*result reproduces the original matrix
 | |
| //Due to pivoting the result is upper triangular only before applying final permutation
 | |
| //
 | |
| template <typename T>
 | |
| SparseSMat<T>  SparseSMat<T>::cholesky(void) const
 | |
| {
 | |
| if(nn!=mm) laerror("Cholesky defined only for square matrices");
 | |
| //we need real values for sorting, if T is already real it makes just an unnecessary copy of one vector
 | |
| NRVec<typename LA_traits<T>::normtype> diagreal(nn);
 | |
| {
 | |
| NRVec<T> diag(nn); diagonalof(diag);
 | |
| for(SPMatindex i=0; i<nn; ++i) diagreal[i]=LA_traits<T>::realpart(diag[i]);
 | |
| }
 | |
| 
 | |
| NRVec<int> pivot(nn);
 | |
| for(int i=0; i<nn; ++i) pivot[i]=i;
 | |
| 
 | |
| //pivot by sorting
 | |
| //!this is actually not fully correct approach, since the pivoting should be done during the Cholesky process
 | |
| //Now it can happen that some elements will vanish in the process, while there will be some remaining ones later
 | |
| //However, column swapping in the regular pivoting in an in-place algorithm would be rather clumsy with std::map , since simply renumbering the key is not allowed
 | |
| //This works reasonably well so keep it like this at the moment
 | |
| diagreal.sort(1,0,nn-1,pivot);
 | |
| 
 | |
| //prepare inverse permutation
 | |
| NRVec<int> invpivot(nn);
 | |
| for(int i=0; i<nn; ++i) invpivot[pivot[i]]=i;
 | |
| 
 | |
| //std::cout <<"sorted diagonal\n"<<diagreal;
 | |
| //std::cout <<"pivot\n"<<pivot;
 | |
| 
 | |
| //copy-permute upper triangle
 | |
| SparseSMat<T> r;
 | |
| r.nn=nn;
 | |
| r.mm=nn;
 | |
| r.count = new int(1);
 | |
| r.v = new std::map<SPMatindex,T> * [nn];
 | |
| for(SPMatindex i=0; i<nn; ++i) 
 | |
|        if(v[pivot[i]])
 | |
| 		{
 | |
| 		r.v[i]= new typename std::map<SPMatindex,T>; 
 | |
| 		typename std::map<SPMatindex,T>::iterator p;		
 | |
| 		for(p=v[pivot[i]]->begin(); p!=v[pivot[i]]->end(); ++p)
 | |
| 			{
 | |
| 			if(invpivot[p->first] >= i) 
 | |
| 				{
 | |
| 				(*r.v[i])[invpivot[p->first]] = p->second;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	else
 | |
| 		r.v[i]= NULL;
 | |
| 
 | |
| //std::cout <<"Permuted upper triangle matrix\n"<<r;
 | |
| //SparseSMat<T> r0(r);r.copyonwrite();
 | |
| 
 | |
| //perform complex, positive semidefinite Cholesky with thresholding by SPARSEEPSILON
 | |
| SPMatindex i,j,k;
 | |
| int rank=0;
 | |
| for(k=0; k<nn; ++k)
 | |
|     if(r.v[k])
 | |
| 	{
 | |
| 	typename std::map<SPMatindex,T>::iterator p;
 | |
| 	p= r.v[k]->find(k);
 | |
| 	if(p==r.v[k]->end()) continue; //must not break due to the a priori  pivoting
 | |
| 	if(LA_traits<T>::realpart(p->second) < CHOLESKYEPSILON) continue; //must not break due to the a priori  pivoting
 | |
| 	++rank;
 | |
| 	typename LA_traits<T>::normtype tmp = std::sqrt(LA_traits<T>::realpart(p->second));
 | |
| 	p->second = tmp;
 | |
| 	NRVec<T> linek(0.,nn);
 | |
| 	for(p=r.v[k]->begin(); p!=r.v[k]->end(); ++p) 
 | |
| 		{
 | |
| 		if(p->first > k) p->second /= tmp;
 | |
| 		linek[p->first] = p->second;
 | |
| 		}
 | |
| 	for(j=k+1; j<nn; ++j)
 | |
|  	    if(r.v[j])
 | |
| 		{
 | |
| 		T akj = LA_traits<T>::conjugate(linek[j]);
 | |
| 		NRVec<int> linek_used(0,nn);
 | |
| 		if(std::abs(akj)>SPARSEEPSILON) 
 | |
| 			{
 | |
| 			for(p=r.v[j]->begin(); p!=r.v[j]->end(); ++p)
 | |
| 				{
 | |
| 					p->second -= akj * linek[p->first];
 | |
| 					linek_used[p->first]=1;
 | |
| 				}	
 | |
| 			//subtract also elements nonzero in line k but non-existent in line j
 | |
| 			for(i=j; i<nn; ++i) 
 | |
| 			    if(!linek_used[i] && std::abs(linek[i]) > SPARSEEPSILON)
 | |
| 				{
 | |
| 				(*r.v[j])[i] = -akj * linek[i];
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| /*
 | |
| SparseSMat<T> br(nn);
 | |
| br.gemm(0,r,'c',r,'n',1);
 | |
| //cancel low triangle from br
 | |
| for(k=0; k<nn; ++k)
 | |
|     if(br.v[k])
 | |
| 	{
 | |
| 	 typename std::map<SPMatindex,T>::iterator p;
 | |
| 	for(p=br.v[k]->begin(); p!=br.v[k]->end(); ++p)
 | |
| 		if(p->first <k) p->second=0.;
 | |
| 	}
 | |
| std::cout << "Error before permute = " <<(br-r0).norm()<<std::endl;
 | |
| */
 | |
| 
 | |
| //permute the result back;
 | |
| for(k=0; k<nn; ++k)
 | |
|     if(r.v[k])
 | |
| 	{
 | |
| 	typename std::map<SPMatindex,T>::iterator p;
 | |
| 	typename std::map<SPMatindex,T> *vnew = new typename std::map<SPMatindex,T>;
 | |
| 	for(p=r.v[k]->begin(); p!=r.v[k]->end(); ++p)
 | |
| 		{
 | |
|         	if(std::abs(p->second) > SPARSEEPSILON) (*vnew)[pivot[p->first]] = p->second;
 | |
| 		}
 | |
| 	delete r.v[k];
 | |
| 	r.v[k]=vnew;
 | |
| 	}
 | |
| 
 | |
| return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //outer product expected to be sparse
 | |
| template<typename T>
 | |
| SparseSMat<T> otimes_sparse(const NRVec<T> &lhs, const NRVec<T> &rhs, const bool conjugate=false, const T &scale=1) 
 | |
| {
 | |
| SparseSMat<T> r(lhs.size(),rhs.size());
 | |
| for(SPMatindex i=0; i<lhs.size(); ++i)
 | |
|     if(lhs[i]!=(T)0)
 | |
| 	{
 | |
| 	for(SPMatindex j=0; j<rhs.size(); ++j)
 | |
| 	    if(rhs[j]!=(T)0)
 | |
| 		{
 | |
| 		T x=lhs[i]*(conjugate?LA_traits<T>::conjugate(rhs[j]):rhs[j])*scale;
 | |
| 		if(std::abs(x)>SPARSEEPSILON) r.add(i,j,x);
 | |
| 		}
 | |
| 	}
 | |
| return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| }//namespace
 | |
| #endif //_SPARSESMAT_H_
 |