2008-02-26 14:55:23 +01:00
/*
LA : linear algebra C + + interface library
Copyright ( C ) 2008 Jiri Pittner < jiri . pittner @ jh - inst . cas . cz > or < jiri @ pittnerovi . com >
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
2005-02-01 00:08:03 +01:00
# ifndef _LA_NONCLASS_H_
# define _LA_NONCLASS_H_
2004-03-17 04:07:21 +01:00
# include "vec.h"
# include "smat.h"
# include "mat.h"
2005-02-06 15:01:27 +01:00
# include "la_traits.h"
2004-03-17 04:07:21 +01:00
2009-11-12 22:01:19 +01:00
namespace LA {
2005-02-04 15:31:42 +01:00
2004-03-17 04:07:21 +01:00
//MISC
2009-10-08 16:01:15 +02:00
template < class T >
2006-08-15 22:29:01 +02:00
const NRSMat < T > twoside_transform ( const NRSMat < T > & S , const NRMat < T > & C , bool transp = 0 ) //calculate C^dagger S C
2006-08-15 22:23:32 +02:00
{
2006-08-15 22:29:01 +02:00
if ( transp )
{
NRMat < T > tmp = C * S ;
2006-08-15 22:29:55 +02:00
NRMat < T > result ( C . nrows ( ) , C . nrows ( ) ) ;
2006-08-15 22:29:01 +02:00
result . gemm ( ( T ) 0 , tmp , ' n ' , C , ' t ' , ( T ) 1 ) ;
return NRSMat < T > ( result ) ;
}
2006-08-15 22:23:32 +02:00
NRMat < T > tmp = S * C ;
NRMat < T > result ( C . ncols ( ) , C . ncols ( ) ) ;
result . gemm ( ( T ) 0 , C , ' t ' , tmp , ' n ' , ( T ) 1 ) ;
return NRSMat < T > ( result ) ;
}
2009-10-08 16:01:15 +02:00
template < class T >
2004-03-17 17:39:07 +01:00
const NRMat < T > diagonalmatrix ( const NRVec < T > & x )
{
int n = x . size ( ) ;
NRMat < T > result ( ( T ) 0 , n , n ) ;
T * p = result [ 0 ] ;
for ( int j = 0 ; j < n ; j + + ) { * p = x [ j ] ; p + = ( n + 1 ) ; }
return result ;
}
2004-03-17 04:07:21 +01:00
//more efficient commutator for a special case of full matrices
template < class T >
inline const NRMat < T > commutator ( const NRMat < T > & x , const NRMat < T > & y , const bool trx = 0 , const bool tryy = 0 )
{
NRMat < T > r ( trx ? x . ncols ( ) : x . nrows ( ) , tryy ? y . nrows ( ) : y . ncols ( ) ) ;
r . gemm ( ( T ) 0 , x , trx ? ' t ' : ' n ' , y , tryy ? ' t ' : ' n ' , ( T ) 1 ) ;
r . gemm ( ( T ) 1 , y , tryy ? ' t ' : ' n ' , x , trx ? ' t ' : ' n ' , ( T ) - 1 ) ;
return r ;
}
//more efficient commutator for a special case of full matrices
template < class T >
inline const NRMat < T > anticommutator ( const NRMat < T > & x , const NRMat < T > & y , const bool trx = 0 , const bool tryy = 0 )
{
NRMat < T > r ( trx ? x . ncols ( ) : x . nrows ( ) , tryy ? y . nrows ( ) : y . ncols ( ) ) ;
r . gemm ( ( T ) 0 , x , trx ? ' t ' : ' n ' , y , tryy ? ' t ' : ' n ' , ( T ) 1 ) ;
r . gemm ( ( T ) 1 , y , tryy ? ' t ' : ' n ' , x , trx ? ' t ' : ' n ' , ( T ) 1 ) ;
return r ;
}
//////////////////////
// LAPACK interface //
//////////////////////
# define declare_la(T) \
extern const NRVec < T > diagofproduct ( const NRMat < T > & a , const NRMat < T > & b , \
bool trb = 0 , bool conjb = 0 ) ; \
extern T trace2 ( const NRMat < T > & a , const NRMat < T > & b , bool trb = 0 ) ; \
extern T trace2 ( const NRSMat < T > & a , const NRSMat < T > & b , const bool diagscaled = 0 ) ; \
2006-09-10 22:06:44 +02:00
extern T trace2 ( const NRSMat < T > & a , const NRMat < T > & b , const bool diagscaled = 0 ) ; \
2011-01-18 15:37:05 +01:00
extern void linear_solve ( NRMat < T > & a , NRMat < T > * b , T * det = 0 , int n = 0 ) ; /*solve Ax^T=b^T (b is nrhs x n) */ \
extern void linear_solve ( NRSMat < T > & a , NRMat < T > * b , T * det = 0 , int n = 0 ) ; /*solve Ax^T=b^T (b is nrhs x n) */ \
2005-02-17 23:54:27 +01:00
extern void linear_solve ( NRMat < T > & a , NRVec < T > & b , double * det = 0 , int n = 0 ) ; \
extern void linear_solve ( NRSMat < T > & a , NRVec < T > & b , double * det = 0 , int n = 0 ) ; \
2009-05-28 15:02:01 +02:00
extern void diagonalize ( NRMat < T > & a , NRVec < LA_traits < T > : : normtype > & w , const bool eivec = 1 , const bool corder = 1 , int n = 0 , NRMat < T > * b = NULL , const int itype = 1 ) ; \
extern void diagonalize ( NRSMat < T > & a , NRVec < LA_traits < T > : : normtype > & w , NRMat < T > * v , const bool corder = 1 , int n = 0 , NRSMat < T > * b = NULL , const int itype = 1 ) ; \
2004-03-17 04:07:21 +01:00
extern void singular_decomposition ( NRMat < T > & a , NRMat < T > * u , NRVec < T > & s , \
2005-02-17 23:54:27 +01:00
NRMat < T > * v , const bool corder = 1 , int m = 0 , int n = 0 ) ;
2004-03-17 04:07:21 +01:00
2006-05-28 16:12:01 +02:00
/*NOTE!!! all versions of diagonalize DESTROY A and generalized diagonalize also B matrix */
2004-03-17 04:07:21 +01:00
declare_la ( double )
declare_la ( complex < double > )
// Separate declarations
2005-02-17 23:54:27 +01:00
//general nonsymmetric matrix and generalized diagonalization
2011-01-18 15:37:05 +01:00
//corder =0 ... C rows are eigenvectors, =1 ... C columns are eigenvectors
2004-03-17 04:07:21 +01:00
extern void gdiagonalize ( NRMat < double > & a , NRVec < double > & wr , NRVec < double > & wi ,
2008-03-02 17:40:22 +01:00
NRMat < double > * vl , NRMat < double > * vr , const bool corder = 1 , int n = 0 , const int sorttype = 0 , const int biorthonormalize = 0 ,
2011-01-18 15:37:05 +01:00
NRMat < double > * b = NULL , NRVec < double > * beta = NULL ) ; //this used real storage of eigenvectors like dgeev
template < typename T >
extern void gdiagonalize ( NRMat < T > & a , NRVec < complex < double > > & w ,
2005-02-17 23:54:27 +01:00
NRMat < complex < double > > * vl , NRMat < complex < double > > * vr ,
2008-03-02 17:40:22 +01:00
const bool corder = 1 , int n = 0 , const int sorttype = 0 , const int biorthonormalize = 0 ,
2011-01-18 15:37:05 +01:00
NRMat < T > * b = NULL , NRVec < T > * beta = NULL ) ; //eigenvectors are stored in complex matrices for T both double and complex
2004-03-17 04:07:21 +01:00
2011-01-18 15:37:05 +01:00
//complex,real,imaginary parts of various entities
template < typename T >
extern const typename LA_traits < T > : : realtype realpart ( const T & ) ;
template < typename T >
extern const typename LA_traits < T > : : realtype imagpart ( const T & ) ;
template < typename T >
extern const typename LA_traits < T > : : complextype realmatrix ( const T & ) ;
template < typename T >
extern const typename LA_traits < T > : : complextype imagmatrix ( const T & ) ;
template < typename T >
extern const typename LA_traits < T > : : complextype complexmatrix ( const T & , const T & ) ;
2004-03-17 04:07:21 +01:00
2010-01-07 17:10:12 +01:00
//Cholesky decomposition
extern void cholesky ( NRMat < double > & a , bool upper = 1 ) ;
extern void cholesky ( NRMat < complex < double > > & a , bool upper = 1 ) ;
2004-03-17 04:07:21 +01:00
//inverse by means of linear solve, preserving rhs intact
template < typename T >
const NRMat < T > inverse ( NRMat < T > a , T * det = 0 )
{
# ifdef DEBUG
if ( a . nrows ( ) ! = a . ncols ( ) ) laerror ( " inverse() for non-square matrix " ) ;
# endif
NRMat < T > result ( a . nrows ( ) , a . nrows ( ) ) ;
result = ( T ) 1. ;
2008-03-02 17:40:22 +01:00
a . copyonwrite ( ) ;
2004-03-17 04:07:21 +01:00
linear_solve ( a , & result , det ) ;
2008-03-02 17:40:22 +01:00
result . transposeme ( ) ; //tested with noncblas
2004-03-17 04:07:21 +01:00
return result ;
}
2010-01-17 21:28:38 +01:00
//several matrix norms
template < class MAT >
typename LA_traits < MAT > : : normtype MatrixNorm ( const MAT & A , const char norm ) ;
//condition number
template < class MAT >
typename LA_traits < MAT > : : normtype CondNumber ( const MAT & A , const char norm ) ;
2005-02-06 15:01:27 +01:00
//general determinant
template < class MAT >
2005-09-04 21:34:10 +02:00
const typename LA_traits < MAT > : : elementtype determinant ( MAT a ) //passed by value
{
typename LA_traits < MAT > : : elementtype det ;
if ( a . nrows ( ) ! = a . ncols ( ) ) laerror ( " determinant of non-square matrix " ) ;
linear_solve ( a , NULL , & det ) ;
return det ;
}
//general determinant destructive on input
template < class MAT >
const typename LA_traits < MAT > : : elementtype determinant_destroy ( MAT & a ) //passed by reference
2005-02-06 15:01:27 +01:00
{
2005-02-14 01:10:07 +01:00
typename LA_traits < MAT > : : elementtype det ;
2005-02-06 15:01:27 +01:00
if ( a . nrows ( ) ! = a . ncols ( ) ) laerror ( " determinant of non-square matrix " ) ;
linear_solve ( a , NULL , & det ) ;
return det ;
}
2005-09-11 22:04:24 +02:00
2010-02-25 21:47:01 +01:00
//------------------------------------------------------------------------------
// solves set of linear equations using gesvx
// input:
// A double precision matrix of dimension nn x mm, where min(nn, mm) >= n
// B double prec. array dimensioned as nrhs x n
// rhsCount nrhs - count of right hand sides
// eqCount n - count of equations
// eq use equilibration of matrix A before solving
// saveA if set, do no overwrite A if equilibration in effect
// rcond if not NULL, store the returned rcond value from dgesvx
// output:
// solution is stored in B
// the info parameter of gesvx is returned (see man dgesvx)
//------------------------------------------------------------------------------
2010-01-17 21:28:38 +01:00
template < class T >
2010-02-25 21:47:01 +01:00
int linear_solve_x ( NRMat < T > & A , T * B , const int rhsCount , const int eqCount , const bool eq , const bool saveA , double * rcond ) ;
//------------------------------------------------------------------------------
// for given square matrices A, B computes X = AB^{-1} as follows
// XB = A => B^TX^T = A^T
// input:
// _A double precision matrix of dimension nn x nn
// _B double prec. matrix of dimension nn x nn
// _useEq use equilibration suitable for badly conditioned matrices
// _rcond if not NULL, store the returned value of rcond fromd dgesvx
// output:
// solution is stored in _B
// the info parameter of dgesvx is returned (see man dgesvx)
//------------------------------------------------------------------------------
2010-01-17 21:28:38 +01:00
template < class T >
2010-02-25 21:47:01 +01:00
int multiply_by_inverse ( NRMat < T > & A , NRMat < T > & B , bool useEq , double * rcond ) ;
2010-01-17 21:28:38 +01:00
2005-09-05 16:19:44 +02:00
//general submatrix, INDEX will typically be NRVec<int> or even int*
//NOTE: in order to check consistency between nrows and rows in rows is a NRVec
//some advanced metaprogramming would be necessary
2005-09-06 17:55:07 +02:00
//application: e.g. ignoresign=true, equalsigns=true, indexshift= -1 ... elements of Slater overlaps for RHF
2005-09-05 16:19:44 +02:00
2005-09-04 21:34:10 +02:00
template < class MAT , class INDEX >
2005-09-06 17:55:07 +02:00
const NRMat < typename LA_traits < MAT > : : elementtype > submatrix ( const MAT a , const int nrows , const INDEX rows , const int ncols , const INDEX cols , int indexshift = 0 , bool ignoresign = false , bool equalsigns = false )
2005-09-04 21:34:10 +02:00
{
2005-09-05 16:19:44 +02:00
NRMat < typename LA_traits < MAT > : : elementtype > r ( nrows , ncols ) ;
2005-09-04 21:34:10 +02:00
2005-09-06 17:55:07 +02:00
if ( equalsigns ) //make the element zero if signs of both indices are opposite
{
if ( ignoresign )
{
for ( int i = 0 ; i < nrows ; + + i )
for ( int j = 0 ; j < ncols ; + + j )
2009-11-12 22:01:19 +01:00
r ( i , j ) = rows [ i ] * cols [ j ] < 0 ? 0. : a ( std : : abs ( rows [ i ] ) + indexshift , std : : abs ( cols [ j ] ) + indexshift ) ;
2005-09-06 17:55:07 +02:00
}
else
{
for ( int i = 0 ; i < nrows ; + + i )
for ( int j = 0 ; j < ncols ; + + j )
r ( i , j ) = rows [ i ] * cols [ j ] < 0 ? 0. : a ( rows [ i ] + indexshift , cols [ j ] + indexshift ) ;
}
}
else
{
2005-09-04 21:34:10 +02:00
if ( ignoresign )
{
2005-09-05 16:19:44 +02:00
for ( int i = 0 ; i < nrows ; + + i )
for ( int j = 0 ; j < ncols ; + + j )
2009-11-12 22:01:19 +01:00
r ( i , j ) = a ( std : : abs ( rows [ i ] ) + indexshift , std : : abs ( cols [ j ] ) + indexshift ) ;
2005-09-04 21:34:10 +02:00
}
else
{
2005-09-05 16:19:44 +02:00
for ( int i = 0 ; i < nrows ; + + i )
for ( int j = 0 ; j < ncols ; + + j )
2005-09-04 21:34:10 +02:00
r ( i , j ) = a ( rows [ i ] + indexshift , cols [ j ] + indexshift ) ;
}
2005-09-06 17:55:07 +02:00
}
2005-09-04 21:34:10 +02:00
return r ;
}
2005-02-06 15:01:27 +01:00
//auxiliary routine to adjust eigenvectors to guarantee real logarithm
extern void adjustphases ( NRMat < double > & v ) ;
2006-04-01 06:48:01 +02:00
2006-04-07 22:47:38 +02:00
//declaration of template interface to cblas routines with full options available
//just to facilitate easy change between float, double, complex in a user code
//very incomplete, add new ones as needed
template < class T > inline void xcopy ( int n , const T * x , int incx , T * y , int incy ) ;
template < class T > inline void xaxpy ( int n , const T & a , const T * x , int incx , T * y , int incy ) ;
template < class T > inline T xdot ( int n , const T * x , int incx , const T * y , int incy ) ;
//specialized definitions have to be in the header file to be inlineable, eliminating any runtime overhead
template < >
inline void xcopy < double > ( int n , const double * x , int incx , double * y , int incy )
{
cblas_dcopy ( n , x , incx , y , incy ) ;
}
template < >
inline void xaxpy < double > ( int n , const double & a , const double * x , int incx , double * y , int incy )
{
cblas_daxpy ( n , a , x , incx , y , incy ) ;
}
template < >
inline double xdot < double > ( int n , const double * x , int incx , const double * y , int incy )
{
return cblas_ddot ( n , x , incx , y , incy ) ;
}
2006-04-01 06:48:01 +02:00
2006-09-12 22:27:41 +02:00
//debugging aid: reconstruct an explicit matrix from the implicit version
//which provides gemv only
template < typename M , typename T >
NRMat < T > reconstructmatrix ( const M & implicitmat )
{
NRMat < T > r ( implicitmat . nrows ( ) , implicitmat . ncols ( ) ) ;
NRVec < T > rhs ( 0. , implicitmat . ncols ( ) ) ;
NRVec < T > tmp ( implicitmat . nrows ( ) ) ;
for ( int i = 0 ; i < implicitmat . ncols ( ) ; + + i )
{
rhs [ i ] = 1. ;
implicitmat . gemv ( 0. , tmp , ' n ' , 1. , rhs ) ;
for ( int j = 0 ; j < implicitmat . nrows ( ) ; + + j ) r ( j , i ) = tmp [ j ] ;
rhs [ i ] = 0. ;
}
return r ;
}
2011-01-18 15:37:05 +01:00
//matrix functions via diagonalization
extern NRMat < double > realmatrixfunction ( NRMat < double > a , double ( * f ) ( double ) ) ; //a has to by in fact symmetric
extern NRMat < complex < double > > complexmatrixfunction ( NRMat < double > a , double ( * fre ) ( double ) , double ( * fim ) ( double ) ) ; //a has to by in fact symmetric
template < typename T >
NRMat < T > matrixfunction ( NRSMat < T > a , double ( * f ) ( double ) ) //of symmetric/hermitian matrix
{
int n = a . nrows ( ) ;
NRVec < double > w ( n ) ;
NRMat < T > v ( n , n ) ;
diagonalize ( a , w , & v , 0 ) ;
for ( int i = 0 ; i < a . nrows ( ) ; i + + ) w [ i ] = ( * f ) ( w [ i ] ) ;
NRMat < T > u = v ;
NRVec < T > ww = w ; //diagmultl needs same type
v . diagmultl ( ww ) ;
NRMat < T > r ( n , n ) ;
r . gemm ( 0.0 , u , ' t ' , v , ' n ' , 1.0 ) ; //gemm will use 'c' for complex ones
return r ;
}
template < typename T >
extern NRMat < T > matrixfunction ( NRMat < T > a , complex < double > ( * f ) ( const complex < double > & ) ) //of a general real/complex matrix
{
int n = a . nrows ( ) ;
NRVec < complex < double > > w ( n ) ;
NRMat < complex < double > > u ( n , n ) , v ( n , n ) ;
# ifdef debugmf
NRMat < complex < double > > a0 = a ;
# endif
gdiagonalize < T > ( a , w , & u , & v , false , n , 0 , false , NULL , NULL ) ; //a gets destroyed, eigenvectors are rows
NRVec < complex < double > > z = diagofproduct ( u , v , 1 , 1 ) ;
# ifdef debugmf
std : : cout < < " TEST matrixfunction \n " < < w < < u < < v < < z ;
std : : cout < < " TEST matrixfunction1 " < < u * a0 - diagonalmatrix ( w ) * u < < std : : endl ;
std : : cout < < " TEST matrixfunction2 " < < a0 * v . transpose ( 1 ) - v . transpose ( 1 ) * diagonalmatrix ( w ) < < std : : endl ;
std : : cout < < " TEST matrixfunction3 " < < u * v . transpose ( 1 ) < < diagonalmatrix ( z ) < < std : : endl ;
# endif
NRVec < complex < double > > wz ( n ) ;
for ( int i = 0 ; i < a . nrows ( ) ; i + + ) wz [ i ] = w [ i ] / z [ i ] ;
# ifdef debugmf
std : : cout < < " TEST matrixfunction4 " < < a0 < < v . transpose ( true ) * diagonalmatrix ( wz ) * u < < std : : endl ;
# endif
for ( int i = 0 ; i < a . nrows ( ) ; i + + ) w [ i ] = ( * f ) ( w [ i ] ) / z [ i ] ;
u . diagmultl ( w ) ;
NRMat < complex < double > > r ( n , n ) ;
r . gemm ( 0.0 , v , ' c ' , u , ' n ' , 1.0 ) ;
return ( NRMat < T > ) r ; //convert back to real if applicable by the explicit decomplexifying constructor; it is NOT checked to which accuracy the imaginary part is actually zero
}
extern complex < double > sqrtinv ( const complex < double > & ) ;
extern double sqrtinv ( const double ) ;
//functions on matrices
inline NRMat < double > sqrt ( const NRSMat < double > & a ) { return matrixfunction ( a , & std : : sqrt ) ; }
inline NRMat < double > sqrtinv ( const NRSMat < double > & a ) { return matrixfunction ( a , & sqrtinv ) ; }
inline NRMat < double > realsqrt ( const NRMat < double > & a ) { return realmatrixfunction ( a , & std : : sqrt ) ; }
inline NRMat < double > realsqrtinv ( const NRMat < double > & a ) { return realmatrixfunction ( a , & sqrtinv ) ; }
inline NRMat < double > log ( const NRSMat < double > & a ) { return matrixfunction ( a , & std : : log ) ; }
extern NRMat < double > log ( const NRMat < double > & a ) ;
extern NRMat < complex < double > > log ( const NRMat < complex < double > > & a ) ;
extern NRMat < complex < double > > exp0 ( const NRMat < complex < double > > & a ) ;
extern NRMat < complex < double > > copytest ( const NRMat < complex < double > > & a ) ;
extern NRMat < double > copytest ( const NRMat < double > & a ) ;
extern NRMat < double > exp0 ( const NRMat < double > & a ) ;
2009-11-12 22:01:19 +01:00
} //namespace
2005-02-01 00:08:03 +01:00
# endif