LA_library/matexp.h

462 lines
12 KiB
C
Raw Normal View History

2008-02-26 14:55:23 +01:00
/*
LA: linear algebra C++ interface library
Copyright (C) 2008 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
2005-02-06 15:01:27 +01:00
#ifndef _MATEXP_H_
#define _MATEXP_H_
2004-03-17 04:07:21 +01:00
//general routine for polynomial of a matrix, tuned to minimize the number
//of matrix-matrix multiplications on cost of additions and memory
// the polynom and exp routines will work on any type, for which traits class
// is defined containing definition of an element type, norm and axpy operation
#include "la_traits.h"
2006-09-11 23:33:24 +02:00
#include "laerror.h"
2004-03-17 04:07:21 +01:00
template<class T,class R>
2006-09-04 22:12:34 +02:00
const T polynom0(const T &x, const NRVec<R> &c)
2004-03-17 04:07:21 +01:00
{
int order=c.size()-1;
T z,y;
//trivial reference implementation by horner scheme
if(order==0) {y=x; y=c[0];} //to avoid the problem: we do not know the size of the matrix to contruct a scalar one
else
{
int i;
z=x*c[order];
for(i=order-1; i>=0; i--)
{
if(i<order-1) z=y*x;
y=z+c[i];
}
}
return y;
}
2009-11-05 11:57:43 +01:00
2006-09-04 22:12:34 +02:00
//algorithm which minimazes number of multiplications, at the cost of storage
2004-03-17 04:07:21 +01:00
template<class T,class R>
const T polynom(const T &x, const NRVec<R> &c)
{
int n=c.size()-1;
int i,j,k,m=0,t;
2006-09-04 22:12:34 +02:00
if(n<=4) return polynom0(x,c); //here the horner scheme is optimal
2004-03-17 04:07:21 +01:00
//first find m which minimizes the number of multiplications
j=10*n;
for(i=2;i<=n+1;i++)
{
t=i-2+2*(n/i)-(n%i)?0:1;
if(t<j)
{
j=t;
m=i;
}
}
2006-09-04 22:12:34 +02:00
2004-03-17 04:07:21 +01:00
//allocate array for powers up to m
T *xpows = new T[m];
xpows[0]=x;
for(i=1;i<m;i++) xpows[i]=xpows[i-1]*x;
//run the summation loop
T r,s,f;
k= -1;
for(i=0; i<=n/m;i++)
{
for(j=0;j<m;j++)
{
k++;
if(k>n) break;
2006-09-04 22:12:34 +02:00
if(j==0) {
if(i==0) s=x; /*just to get the dimensions of the matrix*/
s=c[k]; /*create diagonal matrix*/
}
2004-03-17 04:07:21 +01:00
else
2005-02-14 01:10:07 +01:00
LA_traits<T>::axpy(s,xpows[j-1],c[k]); //general s+=xpows[j-1]*c[k]; but more efficient for matrices
2004-03-17 04:07:21 +01:00
}
if(i==0) {r=s; f=xpows[m-1];}
else
{
r+= s*f;
f=f*xpows[m-1];
}
}
delete[] xpows;
return r;
}
//for general objects
template<class T>
const T ncommutator ( const T &x, const T &y, int nest=1, const bool right=1)
{
T z;
if(right) {z=x; while(--nest>=0) z=z*y-y*z;}
else {z=y; while(--nest>=0) z=x*z-z*x;}
return z;
}
template<class T>
const T nanticommutator ( const T &x, const T &y, int nest=1, const bool right=1)
{
T z;
if(right) {z=x; while(--nest>=0) z=z*y+y*z;}
else {z=y; while(--nest>=0) z=x*z+z*x;}
return z;
}
//general BCH expansion (can be written more efficiently in a specialization for matrices)
template<class T>
2006-09-10 22:06:44 +02:00
const T BCHexpansion (const T &h, const T &t, const int n, const bool verbose=0)\
2004-03-17 04:07:21 +01:00
{
T result=h;
double factor=1.;
T z=h;
for(int i=1; i<=n; ++i)
{
factor/=i;
z= z*t-t*z;
2006-09-10 22:06:44 +02:00
if(verbose) cerr << "BCH contribution at order "<<i<<" : "<<z.norm()*factor<<endl;
2004-03-17 04:07:21 +01:00
result+= z*factor;
}
return result;
}
template<class T>
const T ipow( const T &x, int i)
{
if(i<0) laerror("negative exponent in ipow");
2005-02-14 01:10:07 +01:00
if(i==0) {T r=x; r=(typename LA_traits<T>::elementtype)1; return r;}//trick for matrix dimension
2004-03-17 04:07:21 +01:00
if(i==1) return x;
T y,z;
z=x;
while(!(i&1))
{
z = z*z;
i >>= 1;
}
y=z;
while((i >>= 1)/*!=0*/)
{
z = z*z;
if(i&1) y = y*z;
}
return y;
}
inline int nextpow2(const double n)
{
const double log2=log(2.);
if(n<=.75) return 0; //try to keep the taylor expansion short
if(n<=1.) return 1;
return int(ceil(log(n)/log2-log(.75)));
}
2009-11-05 11:57:43 +01:00
//should better be computed by mathematica to have accurate last digits, perhaps chebyshev instead, see exp in glibc
//is shared also for sine and cosine now
static const double exptaylor[]={
2004-03-17 04:07:21 +01:00
1.,
1.,
0.5,
0.1666666666666666666666,
0.0416666666666666666666,
0.0083333333333333333333,
0.0013888888888888888888,
0.00019841269841269841253,
2.4801587301587301566e-05,
2.7557319223985892511e-06,
2.7557319223985888276e-07,
2.5052108385441720224e-08,
2.0876756987868100187e-09,
1.6059043836821613341e-10,
1.1470745597729724507e-11,
7.6471637318198164055e-13,
4.7794773323873852534e-14,
2.8114572543455205981e-15,
1.5619206968586225271e-16,
8.2206352466243294955e-18,
4.1103176233121648441e-19,
2009-11-05 11:57:43 +01:00
1.9572941063391262595e-20,
2004-03-17 04:07:21 +01:00
0.};
2009-11-05 11:57:43 +01:00
2009-11-05 17:28:00 +01:00
//S is element type of T, but T may be any user-defined
template<class T, class C, class S>
NRVec<C> exp_aux(const T &x, int &power, int maxpower, int maxtaylor, S prescale)
2009-11-05 11:57:43 +01:00
{
2009-10-08 16:01:15 +02:00
double mnorm= x.norm() * abs(prescale);
2006-09-10 22:06:44 +02:00
power=nextpow2(mnorm);
2006-09-12 01:34:41 +02:00
if(maxpower>=0 && power>maxpower) power=maxpower;
2004-03-17 04:07:21 +01:00
double scale=exp(-log(2.)*power);
//find how long taylor expansion will be necessary
2009-11-05 10:55:44 +01:00
const double precision=1e-14; //further decreasing brings nothing
2004-03-17 04:07:21 +01:00
double s,t;
s=mnorm*scale;
int n=0;
t=1.;
do {
n++;
t*=s;
}
while(t*exptaylor[n]>precision);//taylor 0 will terminate in any case
2006-09-12 01:34:41 +02:00
if(maxtaylor>=0 && n>maxtaylor) n=maxtaylor; //useful e.g. if the matrix is nilpotent in order n+1 as the CC T operator for n electrons
2006-09-04 22:12:34 +02:00
2006-09-10 22:06:44 +02:00
2004-03-17 04:07:21 +01:00
int i; //adjust the coefficients in order to avoid scaling the argument
2006-09-11 18:21:46 +02:00
NRVec<C> taylor2(n+1);
2004-03-17 04:07:21 +01:00
for(i=0,t=1.;i<=n;i++)
{
taylor2[i]=exptaylor[i]*t;
t*=scale;
}
2009-11-05 10:55:44 +01:00
//cout <<"TEST power, scale "<<power<<" "<<scale<<endl;
//cout <<"TEST taylor2 "<<taylor2<<endl;
2004-03-17 04:07:21 +01:00
return taylor2;
}
2009-11-05 17:28:00 +01:00
template<class T, class C, class S>
void sincos_aux(NRVec<C> &si, NRVec<C> &co, const T &x, int &power,int maxpower, int maxtaylor, const S prescale)
2009-11-05 11:57:43 +01:00
{
double mnorm= x.norm() * abs(prescale);
power=nextpow2(mnorm);
if(maxpower>=0 && power>maxpower) power=maxpower;
double scale=exp(-log(2.)*power);
//find how long taylor expansion will be necessary
const double precision=1e-14; //further decreasing brings nothing
double s,t;
s=mnorm*scale;
int n=0;
t=1.;
do {
n++;
t*=s;
}
while(t*exptaylor[n]>precision);//taylor 0 will terminate in any case
if(maxtaylor>=0 && n>maxtaylor) n=maxtaylor; //useful e.g. if the matrix is nilpotent in order n+1 as the CC T operator for n electrons
if((n&1)==0) ++n; //force it to be odd to have same length in sine and cosine
si.resize((n+1)/2);
co.resize((n+1)/2);
int i; //adjust the coefficients in order to avoid scaling the argument
for(i=0,t=1.;i<=n;i++)
{
if(i&1) si[i>>1] = exptaylor[i]* (i&2?-t:t);
else co[i>>1] = exptaylor[i]* (i&2?-t:t);
t*=scale;
}
2009-11-05 17:34:26 +01:00
//cout <<"TEST sin "<<si<<endl;
//cout <<"TEST cos "<<co<<endl;
2009-11-05 11:57:43 +01:00
}
2006-09-10 22:06:44 +02:00
//it seems that we do not gain anything by polynom vs polynom0, check the m-optimization!
2004-03-17 04:07:21 +01:00
template<class T>
2006-09-12 01:34:41 +02:00
const T exp(const T &x, bool horner=true, int maxpower= -1, int maxtaylor= -1 )
2004-03-17 04:07:21 +01:00
{
int power;
//prepare the polynom of and effectively scale T
2009-11-05 17:28:00 +01:00
NRVec<typename LA_traits<T>::normtype> taylor2=exp_aux<T,typename LA_traits<T>::normtype,double>(x,power,maxpower,maxtaylor,1.);
2004-03-17 04:07:21 +01:00
2006-09-04 22:12:34 +02:00
2006-09-10 22:06:44 +02:00
T r= horner?polynom0(x,taylor2):polynom(x,taylor2);
2006-09-04 22:12:34 +02:00
//for accuracy summing from the smallest terms up would be better, but this is more efficient for matrices
2004-03-17 04:07:21 +01:00
//power the result back
for(int i=0; i<power; i++) r=r*r;
return r;
}
2009-11-05 11:57:43 +01:00
//make exp(iH) with real H in real arithmetics
template<class T>
void sincos(T &s, T &c, const T &x, bool horner=true, int maxpower= -1, int maxtaylor= -1 )
{
int power;
NRVec<typename LA_traits<T>::normtype> taylors,taylorc;
2009-11-05 17:28:00 +01:00
sincos_aux<T,typename LA_traits<T>::normtype>(taylors,taylorc,x,power,maxpower,maxtaylor,1.);
2009-11-05 11:57:43 +01:00
//could we save something by computing both polynoms simultaneously?
{
T x2 = x*x;
s = horner?polynom0(x2,taylors):polynom(x2,taylors);
c = horner?polynom0(x2,taylorc):polynom(x2,taylorc);
}
s = s * x;
//power the results back
for(int i=0; i<power; i++)
{
T tmp = c*c - s*s;
s = s*c; s *= 2.;
c=tmp;
}
}
2004-03-17 04:07:21 +01:00
2006-09-11 22:30:33 +02:00
//this simple implementation seems not to be numerically stable enough
//and probably not efficient either
2006-09-12 01:07:22 +02:00
2009-11-05 17:28:00 +01:00
template<class M, class V, class MEL>
void exptimesdestructive(const M &mat, V &result, V &rhs, bool transpose, const MEL scale, int maxpower= -1, int maxtaylor= -1, bool mat_is_0=false) //uses just matrix vector multiplication
2004-03-17 04:07:21 +01:00
{
2007-11-29 14:52:31 +01:00
if(mat_is_0) {result = rhs; LA_traits<V>::copyonwrite(result); return;} //prevent returning a shallow copy of rhs
2006-09-12 01:07:22 +02:00
if(mat.nrows()!=mat.ncols()||(unsigned int) mat.nrows() != (unsigned int)rhs.size()) laerror("inappropriate sizes in exptimes");
2004-03-17 04:07:21 +01:00
int power;
//prepare the polynom of and effectively scale the matrix
2009-11-05 10:55:44 +01:00
NRVec<typename LA_traits<V>::normtype> taylor2=exp_aux<M,typename LA_traits<V>::normtype>(mat,power,maxpower,maxtaylor,scale);
2006-09-12 01:07:22 +02:00
V tmp;
2004-03-17 04:07:21 +01:00
for(int i=1; i<=(1<<power); ++i) //unfortunatelly, here we have to repeat it many times, unlike if the matrix is stored explicitly
{
2006-09-12 01:07:22 +02:00
if(i>1) rhs=result; //apply again to the result of previous application
else result=rhs;
tmp=rhs; //now rhs can be used as scratch
result*=taylor2[0];
2004-03-17 04:07:21 +01:00
for(int j=1; j<taylor2.size(); ++j)
{
2006-09-12 01:07:22 +02:00
mat.gemv(0.,rhs,transpose?'t':'n',scale,tmp);
tmp=rhs;
result.axpy(taylor2[j],tmp);
2004-03-17 04:07:21 +01:00
}
}
2006-09-12 01:07:22 +02:00
return;
2004-03-17 04:07:21 +01:00
}
2005-02-06 15:01:27 +01:00
2006-09-11 23:33:24 +02:00
2009-11-05 17:28:00 +01:00
//actually scale should be elementtype of M, but we do not have it since M can be anything user-defined
//and template paramter for it does not work due to optional arguments
2009-11-05 17:58:04 +01:00
//undecent solution: exptimesreal
2009-11-05 17:28:00 +01:00
//
2006-09-12 01:07:22 +02:00
template<class M, class V>
2009-10-08 16:01:15 +02:00
const V exptimes(const M &mat, V rhs, bool transpose=false, const typename LA_traits<V>::elementtype scale=1., int maxpower= -1, int maxtaylor= -1, bool mat_is_0=false )
2006-09-12 01:07:22 +02:00
{
V result;
2006-09-19 18:09:26 +02:00
exptimesdestructive(mat,result,rhs,transpose,scale,maxpower,maxtaylor,mat_is_0);
2006-09-12 01:07:22 +02:00
return result;
}
2006-09-11 23:33:24 +02:00
2009-11-05 17:58:04 +01:00
template<class M, class V>
const V exptimesreal(const M &mat, V rhs, bool transpose=false, const typename LA_traits<V>::normtype scale=1., int maxpower= -1, int maxtaylor= -1, bool mat_is_0=false )
{
V result;
exptimesdestructive(mat,result,rhs,transpose,scale,maxpower,maxtaylor,mat_is_0);
return result;
}
2006-09-11 23:33:24 +02:00
2009-11-05 17:28:00 +01:00
template<class M, class V, class S>
void sincostimes_simple(const M &mat, V &si, V &co, const V &rhs, const NRVec<typename LA_traits<V>::normtype> &taylors, const NRVec<typename LA_traits<V>::normtype> &taylorc, bool transpose, const S scale)
2009-11-05 16:58:45 +01:00
{
si=rhs * taylors[0];
co=rhs * taylorc[0];
V tmp=rhs;
for(int j=1; j<taylors.size(); ++j)
{
V tmp2(tmp.size());
//multiply by a square of the matrix
mat.gemv(0.,tmp2,transpose?'t':'n',scale,tmp);
mat.gemv(0.,tmp,transpose?'t':'n',scale,tmp2);
si.axpy(taylors[j],tmp);
co.axpy(taylorc[j],tmp);
}
mat.gemv(0.,tmp,transpose?'t':'n',scale,si);
si=tmp;
}
2009-11-05 17:51:16 +01:00
//this recursion is very inefficient, it is better to use complex exptimes!
2009-11-05 17:28:00 +01:00
template<class M, class V, class S>
void sincostimes_aux(const M &mat, V &si, V &co, const V &rhs, const NRVec<typename LA_traits<V>::normtype> &taylors, const NRVec<typename LA_traits<V>::normtype> &taylorc, bool transpose, const S scale, int power)
2009-11-05 16:58:45 +01:00
{
if(power==0) sincostimes_simple(mat,si,co,rhs,taylors,taylorc,transpose,scale);
else
{
V si2,co2; //no large memory allocated yet - size 0
sincostimes_aux(mat,si2,co2,rhs,taylors,taylorc,transpose,scale,power-1);
sincostimes_aux(mat,si,co,co2,taylors,taylorc,transpose,scale,power-1);
V ss,cs;
sincostimes_aux(mat,ss,cs,si2,taylors,taylorc,transpose,scale,power-1);
co -= ss;
si += cs;
}
}
2009-11-05 17:51:16 +01:00
//inefficient, it is better to use complex exptimes!
2009-11-05 17:28:00 +01:00
//again scale should actually be elementtype of M which is inaccessible
2009-11-05 16:58:45 +01:00
template<class M, class V>
2009-11-05 17:34:26 +01:00
void sincostimes(const M &mat, V &si, V &co, const V &rhs, bool transpose=false, const typename LA_traits<V>::normtype scale=1., int maxpower= -1, int maxtaylor= -1, bool mat_is_0=false) //uses just matrix vector multiplication
2009-11-05 16:58:45 +01:00
{
if(mat_is_0) //prevent returning a shallow copy of rhs
{
co = rhs;
LA_traits<V>::copyonwrite(co);
LA_traits<V>::clearme(si);
return;
}
if(mat.nrows()!=mat.ncols()||(unsigned int) mat.nrows() != (unsigned int)rhs.size()) laerror("inappropriate sizes in sincostimes");
//prepare the polynom of and effectively scale the matrix
int power;
NRVec<typename LA_traits<V>::normtype> taylors,taylorc;
sincos_aux<M,typename LA_traits<V>::normtype>(taylors,taylorc,mat,power,maxpower,maxtaylor,scale);
if(taylors.size()!=taylorc.size()) laerror("internal error - same size of sin and cos expansions assumed");
//the actual computation and resursive "squaring"
cout <<"TEST power "<<power<<endl;
sincostimes_aux(mat,si,co,rhs,taylors,taylorc,transpose,scale,power);
return;
}
2006-09-11 23:33:24 +02:00
2006-09-11 17:49:34 +02:00
//@@@ power series matrix logarithm?
2005-02-06 15:01:27 +01:00
#endif