462 lines
12 KiB
C++
462 lines
12 KiB
C++
/*
|
|
LA: linear algebra C++ interface library
|
|
Copyright (C) 2008 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#ifndef _MATEXP_H_
|
|
#define _MATEXP_H_
|
|
//general routine for polynomial of a matrix, tuned to minimize the number
|
|
//of matrix-matrix multiplications on cost of additions and memory
|
|
// the polynom and exp routines will work on any type, for which traits class
|
|
// is defined containing definition of an element type, norm and axpy operation
|
|
|
|
#include "la_traits.h"
|
|
#include "laerror.h"
|
|
|
|
|
|
template<class T,class R>
|
|
const T polynom0(const T &x, const NRVec<R> &c)
|
|
{
|
|
int order=c.size()-1;
|
|
T z,y;
|
|
|
|
//trivial reference implementation by horner scheme
|
|
if(order==0) {y=x; y=c[0];} //to avoid the problem: we do not know the size of the matrix to contruct a scalar one
|
|
else
|
|
{
|
|
int i;
|
|
z=x*c[order];
|
|
for(i=order-1; i>=0; i--)
|
|
{
|
|
if(i<order-1) z=y*x;
|
|
y=z+c[i];
|
|
}
|
|
}
|
|
|
|
return y;
|
|
}
|
|
|
|
|
|
|
|
//algorithm which minimazes number of multiplications, at the cost of storage
|
|
template<class T,class R>
|
|
const T polynom(const T &x, const NRVec<R> &c)
|
|
{
|
|
int n=c.size()-1;
|
|
int i,j,k,m=0,t;
|
|
|
|
if(n<=4) return polynom0(x,c); //here the horner scheme is optimal
|
|
|
|
//first find m which minimizes the number of multiplications
|
|
j=10*n;
|
|
for(i=2;i<=n+1;i++)
|
|
{
|
|
t=i-2+2*(n/i)-(n%i)?0:1;
|
|
if(t<j)
|
|
{
|
|
j=t;
|
|
m=i;
|
|
}
|
|
}
|
|
|
|
|
|
//allocate array for powers up to m
|
|
T *xpows = new T[m];
|
|
xpows[0]=x;
|
|
for(i=1;i<m;i++) xpows[i]=xpows[i-1]*x;
|
|
|
|
|
|
//run the summation loop
|
|
T r,s,f;
|
|
k= -1;
|
|
for(i=0; i<=n/m;i++)
|
|
{
|
|
for(j=0;j<m;j++)
|
|
{
|
|
k++;
|
|
if(k>n) break;
|
|
if(j==0) {
|
|
if(i==0) s=x; /*just to get the dimensions of the matrix*/
|
|
s=c[k]; /*create diagonal matrix*/
|
|
}
|
|
else
|
|
LA_traits<T>::axpy(s,xpows[j-1],c[k]); //general s+=xpows[j-1]*c[k]; but more efficient for matrices
|
|
}
|
|
|
|
if(i==0) {r=s; f=xpows[m-1];}
|
|
else
|
|
{
|
|
r+= s*f;
|
|
f=f*xpows[m-1];
|
|
}
|
|
}
|
|
|
|
delete[] xpows;
|
|
return r;
|
|
}
|
|
|
|
|
|
//for general objects
|
|
template<class T>
|
|
const T ncommutator ( const T &x, const T &y, int nest=1, const bool right=1)
|
|
{
|
|
T z;
|
|
if(right) {z=x; while(--nest>=0) z=z*y-y*z;}
|
|
else {z=y; while(--nest>=0) z=x*z-z*x;}
|
|
return z;
|
|
}
|
|
|
|
template<class T>
|
|
const T nanticommutator ( const T &x, const T &y, int nest=1, const bool right=1)
|
|
{
|
|
T z;
|
|
if(right) {z=x; while(--nest>=0) z=z*y+y*z;}
|
|
else {z=y; while(--nest>=0) z=x*z+z*x;}
|
|
return z;
|
|
}
|
|
|
|
//general BCH expansion (can be written more efficiently in a specialization for matrices)
|
|
template<class T>
|
|
const T BCHexpansion (const T &h, const T &t, const int n, const bool verbose=0)\
|
|
{
|
|
T result=h;
|
|
double factor=1.;
|
|
T z=h;
|
|
for(int i=1; i<=n; ++i)
|
|
{
|
|
factor/=i;
|
|
z= z*t-t*z;
|
|
if(verbose) cerr << "BCH contribution at order "<<i<<" : "<<z.norm()*factor<<endl;
|
|
result+= z*factor;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
template<class T>
|
|
const T ipow( const T &x, int i)
|
|
{
|
|
if(i<0) laerror("negative exponent in ipow");
|
|
if(i==0) {T r=x; r=(typename LA_traits<T>::elementtype)1; return r;}//trick for matrix dimension
|
|
if(i==1) return x;
|
|
T y,z;
|
|
z=x;
|
|
while(!(i&1))
|
|
{
|
|
z = z*z;
|
|
i >>= 1;
|
|
}
|
|
y=z;
|
|
while((i >>= 1)/*!=0*/)
|
|
{
|
|
z = z*z;
|
|
if(i&1) y = y*z;
|
|
}
|
|
return y;
|
|
}
|
|
|
|
inline int nextpow2(const double n)
|
|
{
|
|
const double log2=log(2.);
|
|
if(n<=.75) return 0; //try to keep the taylor expansion short
|
|
if(n<=1.) return 1;
|
|
return int(ceil(log(n)/log2-log(.75)));
|
|
}
|
|
|
|
//should better be computed by mathematica to have accurate last digits, perhaps chebyshev instead, see exp in glibc
|
|
//is shared also for sine and cosine now
|
|
static const double exptaylor[]={
|
|
1.,
|
|
1.,
|
|
0.5,
|
|
0.1666666666666666666666,
|
|
0.0416666666666666666666,
|
|
0.0083333333333333333333,
|
|
0.0013888888888888888888,
|
|
0.00019841269841269841253,
|
|
2.4801587301587301566e-05,
|
|
2.7557319223985892511e-06,
|
|
2.7557319223985888276e-07,
|
|
2.5052108385441720224e-08,
|
|
2.0876756987868100187e-09,
|
|
1.6059043836821613341e-10,
|
|
1.1470745597729724507e-11,
|
|
7.6471637318198164055e-13,
|
|
4.7794773323873852534e-14,
|
|
2.8114572543455205981e-15,
|
|
1.5619206968586225271e-16,
|
|
8.2206352466243294955e-18,
|
|
4.1103176233121648441e-19,
|
|
1.9572941063391262595e-20,
|
|
0.};
|
|
|
|
|
|
//S is element type of T, but T may be any user-defined
|
|
template<class T, class C, class S>
|
|
NRVec<C> exp_aux(const T &x, int &power, int maxpower, int maxtaylor, S prescale)
|
|
{
|
|
|
|
double mnorm= x.norm() * abs(prescale);
|
|
power=nextpow2(mnorm);
|
|
if(maxpower>=0 && power>maxpower) power=maxpower;
|
|
double scale=exp(-log(2.)*power);
|
|
|
|
|
|
//find how long taylor expansion will be necessary
|
|
const double precision=1e-14; //further decreasing brings nothing
|
|
double s,t;
|
|
s=mnorm*scale;
|
|
int n=0;
|
|
t=1.;
|
|
do {
|
|
n++;
|
|
t*=s;
|
|
}
|
|
while(t*exptaylor[n]>precision);//taylor 0 will terminate in any case
|
|
|
|
if(maxtaylor>=0 && n>maxtaylor) n=maxtaylor; //useful e.g. if the matrix is nilpotent in order n+1 as the CC T operator for n electrons
|
|
|
|
|
|
int i; //adjust the coefficients in order to avoid scaling the argument
|
|
NRVec<C> taylor2(n+1);
|
|
for(i=0,t=1.;i<=n;i++)
|
|
{
|
|
taylor2[i]=exptaylor[i]*t;
|
|
t*=scale;
|
|
}
|
|
//cout <<"TEST power, scale "<<power<<" "<<scale<<endl;
|
|
//cout <<"TEST taylor2 "<<taylor2<<endl;
|
|
return taylor2;
|
|
}
|
|
|
|
|
|
|
|
template<class T, class C, class S>
|
|
void sincos_aux(NRVec<C> &si, NRVec<C> &co, const T &x, int &power,int maxpower, int maxtaylor, const S prescale)
|
|
{
|
|
double mnorm= x.norm() * abs(prescale);
|
|
power=nextpow2(mnorm);
|
|
if(maxpower>=0 && power>maxpower) power=maxpower;
|
|
double scale=exp(-log(2.)*power);
|
|
|
|
//find how long taylor expansion will be necessary
|
|
const double precision=1e-14; //further decreasing brings nothing
|
|
double s,t;
|
|
s=mnorm*scale;
|
|
int n=0;
|
|
t=1.;
|
|
do {
|
|
n++;
|
|
t*=s;
|
|
}
|
|
while(t*exptaylor[n]>precision);//taylor 0 will terminate in any case
|
|
|
|
if(maxtaylor>=0 && n>maxtaylor) n=maxtaylor; //useful e.g. if the matrix is nilpotent in order n+1 as the CC T operator for n electrons
|
|
if((n&1)==0) ++n; //force it to be odd to have same length in sine and cosine
|
|
si.resize((n+1)/2);
|
|
co.resize((n+1)/2);
|
|
|
|
int i; //adjust the coefficients in order to avoid scaling the argument
|
|
for(i=0,t=1.;i<=n;i++)
|
|
{
|
|
if(i&1) si[i>>1] = exptaylor[i]* (i&2?-t:t);
|
|
else co[i>>1] = exptaylor[i]* (i&2?-t:t);
|
|
t*=scale;
|
|
}
|
|
//cout <<"TEST sin "<<si<<endl;
|
|
//cout <<"TEST cos "<<co<<endl;
|
|
}
|
|
|
|
|
|
|
|
//it seems that we do not gain anything by polynom vs polynom0, check the m-optimization!
|
|
template<class T>
|
|
const T exp(const T &x, bool horner=true, int maxpower= -1, int maxtaylor= -1 )
|
|
{
|
|
int power;
|
|
|
|
//prepare the polynom of and effectively scale T
|
|
NRVec<typename LA_traits<T>::normtype> taylor2=exp_aux<T,typename LA_traits<T>::normtype,double>(x,power,maxpower,maxtaylor,1.);
|
|
|
|
|
|
T r= horner?polynom0(x,taylor2):polynom(x,taylor2);
|
|
//for accuracy summing from the smallest terms up would be better, but this is more efficient for matrices
|
|
|
|
//power the result back
|
|
for(int i=0; i<power; i++) r=r*r;
|
|
return r;
|
|
}
|
|
|
|
|
|
//make exp(iH) with real H in real arithmetics
|
|
template<class T>
|
|
void sincos(T &s, T &c, const T &x, bool horner=true, int maxpower= -1, int maxtaylor= -1 )
|
|
{
|
|
int power;
|
|
|
|
NRVec<typename LA_traits<T>::normtype> taylors,taylorc;
|
|
sincos_aux<T,typename LA_traits<T>::normtype>(taylors,taylorc,x,power,maxpower,maxtaylor,1.);
|
|
|
|
//could we save something by computing both polynoms simultaneously?
|
|
{
|
|
T x2 = x*x;
|
|
s = horner?polynom0(x2,taylors):polynom(x2,taylors);
|
|
c = horner?polynom0(x2,taylorc):polynom(x2,taylorc);
|
|
}
|
|
s = s * x;
|
|
|
|
//power the results back
|
|
for(int i=0; i<power; i++)
|
|
{
|
|
T tmp = c*c - s*s;
|
|
s = s*c; s *= 2.;
|
|
c=tmp;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//this simple implementation seems not to be numerically stable enough
|
|
//and probably not efficient either
|
|
|
|
template<class M, class V, class MEL>
|
|
void exptimesdestructive(const M &mat, V &result, V &rhs, bool transpose, const MEL scale, int maxpower= -1, int maxtaylor= -1, bool mat_is_0=false) //uses just matrix vector multiplication
|
|
{
|
|
if(mat_is_0) {result = rhs; LA_traits<V>::copyonwrite(result); return;} //prevent returning a shallow copy of rhs
|
|
if(mat.nrows()!=mat.ncols()||(unsigned int) mat.nrows() != (unsigned int)rhs.size()) laerror("inappropriate sizes in exptimes");
|
|
|
|
int power;
|
|
//prepare the polynom of and effectively scale the matrix
|
|
NRVec<typename LA_traits<V>::normtype> taylor2=exp_aux<M,typename LA_traits<V>::normtype>(mat,power,maxpower,maxtaylor,scale);
|
|
|
|
V tmp;
|
|
|
|
for(int i=1; i<=(1<<power); ++i) //unfortunatelly, here we have to repeat it many times, unlike if the matrix is stored explicitly
|
|
{
|
|
if(i>1) rhs=result; //apply again to the result of previous application
|
|
else result=rhs;
|
|
tmp=rhs; //now rhs can be used as scratch
|
|
result*=taylor2[0];
|
|
for(int j=1; j<taylor2.size(); ++j)
|
|
{
|
|
mat.gemv(0.,rhs,transpose?'t':'n',scale,tmp);
|
|
tmp=rhs;
|
|
result.axpy(taylor2[j],tmp);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
//actually scale should be elementtype of M, but we do not have it since M can be anything user-defined
|
|
//and template paramter for it does not work due to optional arguments
|
|
//undecent solution: exptimesreal
|
|
//
|
|
template<class M, class V>
|
|
const V exptimes(const M &mat, V rhs, bool transpose=false, const typename LA_traits<V>::elementtype scale=1., int maxpower= -1, int maxtaylor= -1, bool mat_is_0=false )
|
|
{
|
|
V result;
|
|
exptimesdestructive(mat,result,rhs,transpose,scale,maxpower,maxtaylor,mat_is_0);
|
|
return result;
|
|
}
|
|
|
|
template<class M, class V>
|
|
const V exptimesreal(const M &mat, V rhs, bool transpose=false, const typename LA_traits<V>::normtype scale=1., int maxpower= -1, int maxtaylor= -1, bool mat_is_0=false )
|
|
{
|
|
V result;
|
|
exptimesdestructive(mat,result,rhs,transpose,scale,maxpower,maxtaylor,mat_is_0);
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<class M, class V, class S>
|
|
void sincostimes_simple(const M &mat, V &si, V &co, const V &rhs, const NRVec<typename LA_traits<V>::normtype> &taylors, const NRVec<typename LA_traits<V>::normtype> &taylorc, bool transpose, const S scale)
|
|
{
|
|
si=rhs * taylors[0];
|
|
co=rhs * taylorc[0];
|
|
V tmp=rhs;
|
|
for(int j=1; j<taylors.size(); ++j)
|
|
{
|
|
V tmp2(tmp.size());
|
|
//multiply by a square of the matrix
|
|
mat.gemv(0.,tmp2,transpose?'t':'n',scale,tmp);
|
|
mat.gemv(0.,tmp,transpose?'t':'n',scale,tmp2);
|
|
si.axpy(taylors[j],tmp);
|
|
co.axpy(taylorc[j],tmp);
|
|
}
|
|
mat.gemv(0.,tmp,transpose?'t':'n',scale,si);
|
|
si=tmp;
|
|
}
|
|
|
|
//this recursion is very inefficient, it is better to use complex exptimes!
|
|
template<class M, class V, class S>
|
|
void sincostimes_aux(const M &mat, V &si, V &co, const V &rhs, const NRVec<typename LA_traits<V>::normtype> &taylors, const NRVec<typename LA_traits<V>::normtype> &taylorc, bool transpose, const S scale, int power)
|
|
{
|
|
if(power==0) sincostimes_simple(mat,si,co,rhs,taylors,taylorc,transpose,scale);
|
|
else
|
|
{
|
|
V si2,co2; //no large memory allocated yet - size 0
|
|
sincostimes_aux(mat,si2,co2,rhs,taylors,taylorc,transpose,scale,power-1);
|
|
sincostimes_aux(mat,si,co,co2,taylors,taylorc,transpose,scale,power-1);
|
|
V ss,cs;
|
|
sincostimes_aux(mat,ss,cs,si2,taylors,taylorc,transpose,scale,power-1);
|
|
co -= ss;
|
|
si += cs;
|
|
}
|
|
}
|
|
|
|
|
|
//inefficient, it is better to use complex exptimes!
|
|
//again scale should actually be elementtype of M which is inaccessible
|
|
template<class M, class V>
|
|
void sincostimes(const M &mat, V &si, V &co, const V &rhs, bool transpose=false, const typename LA_traits<V>::normtype scale=1., int maxpower= -1, int maxtaylor= -1, bool mat_is_0=false) //uses just matrix vector multiplication
|
|
{
|
|
if(mat_is_0) //prevent returning a shallow copy of rhs
|
|
{
|
|
co = rhs;
|
|
LA_traits<V>::copyonwrite(co);
|
|
LA_traits<V>::clearme(si);
|
|
return;
|
|
}
|
|
|
|
if(mat.nrows()!=mat.ncols()||(unsigned int) mat.nrows() != (unsigned int)rhs.size()) laerror("inappropriate sizes in sincostimes");
|
|
|
|
//prepare the polynom of and effectively scale the matrix
|
|
int power;
|
|
NRVec<typename LA_traits<V>::normtype> taylors,taylorc;
|
|
sincos_aux<M,typename LA_traits<V>::normtype>(taylors,taylorc,mat,power,maxpower,maxtaylor,scale);
|
|
if(taylors.size()!=taylorc.size()) laerror("internal error - same size of sin and cos expansions assumed");
|
|
//the actual computation and resursive "squaring"
|
|
cout <<"TEST power "<<power<<endl;
|
|
sincostimes_aux(mat,si,co,rhs,taylors,taylorc,transpose,scale,power);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//@@@ power series matrix logarithm?
|
|
|
|
#endif
|