2005-02-02 21:01:07 +01:00
|
|
|
#include "vec.h"
|
|
|
|
#include "smat.h"
|
|
|
|
#include "mat.h"
|
|
|
|
#include "sparsemat.h"
|
|
|
|
#include "nonclass.h"
|
2006-10-23 20:04:50 +02:00
|
|
|
#include <iomanip>
|
|
|
|
#include "auxstorage.h"
|
2005-02-02 21:01:07 +01:00
|
|
|
|
|
|
|
//GMRES solution of a linear system
|
|
|
|
|
|
|
|
//matrix can be any class which has nrows(), ncols(), diagonalof() and NRVec::gemv() available
|
|
|
|
//does not even have to be explicitly stored
|
|
|
|
|
2006-10-23 20:04:50 +02:00
|
|
|
|
|
|
|
/* GMRES-Algorithmus nach Schwarz, S. 552, original impl. M. Warken */
|
|
|
|
/* allows zeilen!= spalten*/
|
|
|
|
/* Matrix can be any class which provides nrows(), ncols(), nrvec::gemv(), and precondition(), does not have to store elements explicitly */
|
|
|
|
|
|
|
|
template<class T>
|
|
|
|
void gmres_backsubstitute(const NRMat<T> &R, NRVec<T> &c, const NRVec<T> &d, const int k)
|
|
|
|
{
|
|
|
|
c.copyonwrite();
|
|
|
|
if(R(k,k)==0.) laerror("singular matrix in gmres triangular solution");
|
|
|
|
c[k] = d[k]/R(k,k);
|
|
|
|
for (int i=k-1;i>=0;i--) c[i] = (d[i]-xdot(k-i,&R(i,i+1),1,&c[i+1],1)) / R(i,i);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//x contains ev. initial guess and on return the solution
|
2005-02-02 21:01:07 +01:00
|
|
|
template<typename T, typename Matrix>
|
2006-10-23 20:04:50 +02:00
|
|
|
void gmres(const Matrix &bigmat, const NRVec<T> &b, NRVec<T> &x, const bool doguess, const double eps, const int MAXIT, const bool verbose, bool square,const bool precondition, int neustart, const int incore)
|
|
|
|
{
|
|
|
|
int zeilen=bigmat.nrows();
|
|
|
|
int spalten=bigmat.ncols();
|
|
|
|
if(spalten==1) laerror("gmres does not work for n==1, use conjgrad if you need this trivial case");
|
|
|
|
if(x.size()!=spalten || b.size() != zeilen) laerror("incompatible vectors and matrix sizes in GMRES");
|
|
|
|
|
|
|
|
if(zeilen!=spalten) square=0;
|
|
|
|
if(!neustart) neustart = zeilen/10;
|
|
|
|
if (neustart < 10) neustart = 10;
|
|
|
|
x.copyonwrite();
|
|
|
|
|
|
|
|
bool flag;
|
|
|
|
double beta,beta_0;
|
|
|
|
double d_alt=0;
|
|
|
|
|
|
|
|
AuxStorage<T> *st;
|
|
|
|
NRVec<T> *v;
|
|
|
|
NRVec<T> r_k(spalten),z(spalten);
|
|
|
|
NRVec<T> cci(MAXIT+1),ssi(MAXIT+1),c(MAXIT+1),d(MAXIT+1);
|
|
|
|
NRMat<T> H(MAXIT+1,MAXIT+1);
|
|
|
|
T ci,si;
|
|
|
|
v = new NRVec<T>[incore?MAXIT+1:1];
|
|
|
|
st = incore?NULL:new AuxStorage<T>;
|
|
|
|
|
|
|
|
if(doguess)
|
|
|
|
{
|
|
|
|
x.gemv(0,bigmat,'t',-1.,b);
|
|
|
|
if(precondition) bigmat.diagonalof(x,true);
|
|
|
|
x.normalize();
|
|
|
|
}
|
|
|
|
|
|
|
|
neustart:
|
|
|
|
for (int l=0;l<neustart;l++) // main loop for restarts
|
|
|
|
{
|
|
|
|
if(square) // r_0 = b + A x_0
|
|
|
|
{
|
|
|
|
r_k.gemv(0,bigmat,'n',1,x);
|
|
|
|
r_k -= b;
|
|
|
|
}
|
|
|
|
else //r_0 = A^t b + A^t A x_0
|
|
|
|
{
|
|
|
|
NRVec<T> dum(zeilen);
|
|
|
|
dum.gemv(0,bigmat,'n',1,x);
|
|
|
|
r_k.gemv(0,bigmat,'t',1,dum);
|
|
|
|
z.gemv(0,bigmat,'t',-1.,b);
|
|
|
|
r_k += z;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(precondition) bigmat.diagonalof(r_k,true);
|
|
|
|
|
|
|
|
beta = r_k.norm();
|
|
|
|
if(l==0) beta_0 = beta;
|
|
|
|
v[0] = r_k* (1./beta);
|
|
|
|
if(!incore) st->put(v[0],0);
|
|
|
|
|
|
|
|
// Iteration
|
|
|
|
for (int k=0;k<MAXIT;k++)
|
|
|
|
{
|
|
|
|
// *iter=l*MAXIT+k;
|
|
|
|
//if(dowarn) if (l>0) fprintf(stderr,"gmres: restart %d\n",l);
|
|
|
|
|
|
|
|
// Schritt 1
|
|
|
|
if(!incore) st->get(v[0],k);
|
|
|
|
if(square)
|
|
|
|
{
|
|
|
|
z.gemv(0,bigmat,'n',1,v[incore?k:0]);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
NRVec<T> dum(zeilen);
|
|
|
|
dum.gemv(0,bigmat,'n',1,v[incore?k:0]);
|
|
|
|
z.gemv(0,bigmat,'t',1,dum);
|
|
|
|
}
|
|
|
|
if(precondition) bigmat.diagonalof(z,true);
|
|
|
|
|
|
|
|
//Schritte 2 und 3
|
|
|
|
for (int i=0;i<=k;i++)
|
|
|
|
{
|
|
|
|
if(!incore) st->get(v[0],i);
|
|
|
|
H(i,k) = z*v[incore?i:0];
|
|
|
|
z.axpy(-H(i,k),v[incore?i:0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
//Schritt 4
|
|
|
|
double tmp;
|
|
|
|
H(k+1,k) = tmp= z.norm();
|
|
|
|
if(tmp < 1.e-2*eps )
|
|
|
|
{
|
|
|
|
if(verbose) cerr <<("gmres restart performed\n");
|
|
|
|
// Abbruchbedingung, konstruiere x_k
|
|
|
|
for (int i=0;i<k;i++)
|
|
|
|
{
|
|
|
|
ci = cci[i];si = ssi[i];
|
|
|
|
for (int j=0;j<k;j++)
|
|
|
|
{
|
|
|
|
T a = H(i,j);
|
|
|
|
H(i,j) = ci*a+si*H(i+1,j);
|
|
|
|
H(i+1,j) = -si*a+ci*H(i+1,j);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Loese R_k c = - d_k
|
|
|
|
d *= -1.;
|
|
|
|
gmres_backsubstitute(H,c,d,k-1);
|
|
|
|
for (int i=0;i<k-1;i++)
|
|
|
|
{
|
|
|
|
if(!incore) st->get(v[0],i);
|
|
|
|
x.axpy(c[i],v[incore?i:0]);
|
|
|
|
}
|
|
|
|
flag=0; goto neustart;
|
|
|
|
} // Ende Abbruch
|
|
|
|
|
|
|
|
v[incore?k+1:0] = z * (1./H(k+1,k));
|
|
|
|
if(!incore) st->put(v[0],k+1);
|
|
|
|
|
|
|
|
// Schritt 5 - berechne Phi_k
|
|
|
|
for (int j=0;j<k+2;j++) d[j] = H(j,k);
|
|
|
|
for (int i=0;i<k;i++)
|
|
|
|
{
|
|
|
|
ci = cci[i];
|
|
|
|
si = ssi[i];
|
|
|
|
T a = d[i];
|
|
|
|
d[i] = ci*a+si*d[i+1];
|
|
|
|
d[i+1] = -si*a+ci*d[i+1];
|
|
|
|
}
|
|
|
|
//phi[k]= atan(d[k+1]/d[k]);
|
|
|
|
ci=hypot(d[k],d[k+1]);
|
|
|
|
cci[k]=d[k]/ci;
|
|
|
|
ssi[k]=d[k+1]/ci;
|
|
|
|
|
|
|
|
//berechne neuen d-Vektor
|
|
|
|
d= 0.;
|
|
|
|
d[0]=beta;
|
|
|
|
for (int i=0;i<=k;i++)
|
|
|
|
{
|
|
|
|
ci = cci[i];si = ssi[i];
|
|
|
|
T a = d[i];
|
|
|
|
d[i] = ci*a+si*d[i+1];
|
|
|
|
d[i+1] = -si*a+ci*d[i+1];
|
|
|
|
}
|
|
|
|
|
|
|
|
//Schritt 6: Konvergenz?
|
|
|
|
if(verbose) cout << "gmres iter "<<l<<" "<<k<<" resid "
|
|
|
|
<<setw(0)<<setiosflags(ios::scientific)<<setprecision(8)
|
|
|
|
<<abs(d[k+1])<< " thr "<<eps*beta_0<< " reduction "
|
|
|
|
<<setw(5)<<setprecision(2)<<resetiosflags(ios::scientific)
|
|
|
|
<<(d_alt - abs(d[k+1]))/d_alt*100<< "\n" <<setprecision(12);
|
|
|
|
d_alt = abs(d[k+1]);
|
|
|
|
//*err= d_alt;
|
|
|
|
if (d_alt < eps*beta_0)
|
|
|
|
{
|
|
|
|
// konstruiere R_k
|
|
|
|
for (int i=0;i<k;i++)
|
|
|
|
{
|
|
|
|
ci = cci[i];
|
|
|
|
si = ssi[i];
|
|
|
|
for (int j=0;j<k;j++)
|
|
|
|
{
|
|
|
|
T a = H(i,j);
|
|
|
|
H(i,j) = ci*a+si*H(i+1,j);
|
|
|
|
H(i+1,j) = -si*a+ci*H(i+1,j);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Loese R_k c = - d_k
|
|
|
|
d *= -1.;
|
|
|
|
gmres_backsubstitute(H,c,d,k-1);
|
|
|
|
for(int i=0;i<k;i++)
|
|
|
|
{
|
|
|
|
if(!incore) st->get(v[0],i);
|
|
|
|
x.axpy(c[i],v[incore?i:0]);
|
|
|
|
}
|
|
|
|
flag=0; goto myreturn;
|
|
|
|
}
|
|
|
|
} // k-Schleife
|
|
|
|
|
|
|
|
// zum Neustart: Konstruiere R_k
|
|
|
|
for (int i=0;i<MAXIT;i++)
|
|
|
|
{
|
|
|
|
ci = cci[i];si = ssi[i];
|
|
|
|
for (int j=0;j<MAXIT;j++)
|
|
|
|
{
|
|
|
|
T a = H(i,j);
|
|
|
|
H(i,j) = ci*a+si*H(i+1,j);
|
|
|
|
H(i+1,j) = -si*a+ci*H(i+1,j);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Loese R_k c = - d_k
|
|
|
|
d *= -1.;
|
|
|
|
gmres_backsubstitute(H,c,d,MAXIT-1);
|
|
|
|
for(int i=0;i<MAXIT;i++)
|
|
|
|
{
|
|
|
|
if(!incore) st->get(v[0],i);
|
|
|
|
x.axpy(c[i],v[incore?i:0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
} // l schleife
|
|
|
|
flag=1;
|
|
|
|
|
|
|
|
myreturn:
|
|
|
|
delete[] v;
|
|
|
|
if(!incore) delete st;
|
|
|
|
|
|
|
|
if(flag) laerror("no convergence in GMRES");
|
|
|
|
}
|
|
|
|
|