apply_permutation_algebra for tensors from product rhs
This commit is contained in:
parent
1dd3905d14
commit
08cdf7c971
56
t.cc
56
t.cc
@ -3451,7 +3451,7 @@ cout <<mm;
|
||||
cout <<m.getcount()<<" "<<v.getcount()<<" "<<mm.getcount()<<endl;
|
||||
}
|
||||
|
||||
if(1)
|
||||
if(0)
|
||||
{
|
||||
NRVec<double> v(12);
|
||||
v.randomize(1.);
|
||||
@ -3462,7 +3462,7 @@ cout<<"abssorted\n";
|
||||
v.printsorted(cout,1,true);
|
||||
}
|
||||
|
||||
if(1)
|
||||
if(0)
|
||||
{
|
||||
NRSMat<double> v(4);
|
||||
v.randomize(1.);
|
||||
@ -3471,7 +3471,7 @@ cout<<"smat sorted\n";
|
||||
v.printsorted(cout,1,false);
|
||||
}
|
||||
|
||||
if(1)
|
||||
if(0)
|
||||
{
|
||||
NRMat<double> v(4,5);
|
||||
v.randomize(1.);
|
||||
@ -3481,7 +3481,57 @@ v.printsorted(cout,1,false);
|
||||
}
|
||||
|
||||
|
||||
if(1)
|
||||
{
|
||||
//grassmann product of n identical rank=2 tensors in m-dim space
|
||||
int n,m;
|
||||
cin >>n>>m;
|
||||
|
||||
//generate the source tensor
|
||||
INDEXGROUP g;
|
||||
g.number=2;
|
||||
g.symmetry= 0;
|
||||
g.offset=0;
|
||||
g.range=m;
|
||||
Tensor<double> x(g);
|
||||
x.randomize(1);
|
||||
|
||||
cout <<x;
|
||||
|
||||
//generate antisymmetrizer of even indices, with identity on odd indices
|
||||
NRVec<NRVec_from1<int> > indexclasses(1);
|
||||
indexclasses[0].resize(n);
|
||||
for(int i=1; i<=n; ++i) {indexclasses[0][i]= i;}
|
||||
PermutationAlgebra<int,int> a=general_antisymmetrizer(indexclasses,0,true);
|
||||
//antisymmetrize only in the even indices
|
||||
PermutationAlgebra<int,double> b(a.size());
|
||||
for(int i=0; i<a.size(); ++i)
|
||||
{
|
||||
b[i].weight=a[i].weight;
|
||||
b[i].perm.resize(2*n);
|
||||
for(int j=1; j<=n; ++j)
|
||||
{
|
||||
b[i].perm[2*j-1] = 2*j-1;
|
||||
b[i].perm[2*j] = 2*a[i].perm[j];
|
||||
}
|
||||
}
|
||||
cout <<b;
|
||||
|
||||
//prepare output tensor (ignoring its symmetry)
|
||||
INDEXGROUP gg;
|
||||
gg.number= 2*n;
|
||||
gg.symmetry= 0;
|
||||
gg.offset=0;
|
||||
gg.range=m;
|
||||
Tensor<double> y(gg);
|
||||
|
||||
NRVec<Tensor<double> > rhsvec(n);
|
||||
for(int i=0; i<n; ++i) rhsvec[i]=x;
|
||||
|
||||
y.apply_permutation_algebra(rhsvec,b,false,1.,0.);
|
||||
|
||||
cout <<y;
|
||||
}
|
||||
|
||||
|
||||
}//main
|
||||
|
51
tensor.cc
51
tensor.cc
@ -924,6 +924,32 @@ for(int p=0; p<help_pa<T>->size(); ++p)
|
||||
}
|
||||
|
||||
|
||||
static int help_tn;
|
||||
template<typename T>
|
||||
static Tensor<T> *help_tv;
|
||||
|
||||
template<typename T>
|
||||
static void permutationalgebra_callback2(const SUPERINDEX &I, T *v)
|
||||
{
|
||||
FLATINDEX J = superindex2flat(I);
|
||||
for(int p=0; p<help_pa<T>->size(); ++p)
|
||||
{
|
||||
FLATINDEX Jp = J.permuted((*help_pa<T>)[p].perm,help_inverse);
|
||||
T product;
|
||||
//build product from the vector of tensors using the Jp index
|
||||
int rankshift=0;
|
||||
for(int i=0; i<help_tn; ++i)
|
||||
{
|
||||
int rank = help_tv<T>[i].rank();
|
||||
FLATINDEX indi = Jp.subvector(rankshift,rankshift+rank-1);
|
||||
if(i==0) product= help_tv<T>[i](indi);
|
||||
else product *= help_tv<T>[i](indi);
|
||||
rankshift += rank;
|
||||
}
|
||||
*v += help_alpha<T> * (*help_pa<T>)[p].weight * product;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<typename T>
|
||||
void Tensor<T>::apply_permutation_algebra(const Tensor<T> &rhs, const PermutationAlgebra<int,T> &pa, bool inverse, T alpha, T beta)
|
||||
@ -932,6 +958,8 @@ if(beta!=(T)0) {if(beta!=(T)1) *this *= beta;} else clear();
|
||||
if(alpha==(T)0) return;
|
||||
copyonwrite();
|
||||
|
||||
if(rank()!=rhs.rank()) laerror("rank mismatch in apply_permutation_algebra");
|
||||
|
||||
help_t<T> = const_cast<Tensor<T> *>(&rhs);
|
||||
help_pa<T> = &pa;
|
||||
help_inverse = inverse;
|
||||
@ -940,6 +968,29 @@ loopover(permutationalgebra_callback);
|
||||
}
|
||||
|
||||
|
||||
template<typename T>
|
||||
void Tensor<T>::apply_permutation_algebra(const NRVec<Tensor<T> > &rhsvec, const PermutationAlgebra<int,T> &pa, bool inverse, T alpha, T beta)
|
||||
{
|
||||
if(beta!=(T)0) {if(beta!=(T)1) *this *= beta;} else clear();
|
||||
if(alpha==(T)0) return;
|
||||
copyonwrite();
|
||||
|
||||
int totrank=0;
|
||||
for(int i=0; i<rhsvec.size(); ++i) totrank+=rhsvec[i].rank();
|
||||
if(totrank!=rank()) laerror("rank mismatch in apply_permutation_algebra");
|
||||
|
||||
help_tv<T> = const_cast<Tensor<T> *>(&rhsvec[0]);
|
||||
help_tn = rhsvec.size();
|
||||
help_pa<T> = &pa;
|
||||
help_inverse = inverse;
|
||||
help_alpha<T> = alpha;
|
||||
loopover(permutationalgebra_callback2);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename T>
|
||||
void Tensor<T>::split_index_group(int group)
|
||||
{
|
||||
|
9
tensor.h
9
tensor.h
@ -41,8 +41,7 @@
|
||||
//@@@ will not be particularly efficient
|
||||
//
|
||||
//@@@permutation of individual indices - chech the indices in sym groups remain adjacent, calculate result's shape, loopover the result and permute using unwind_callback
|
||||
//@@@todo - implement index names - flat vector of names, and contraction by named index list
|
||||
//@@@todo grassmann product and support for RDM and cumulat stuff
|
||||
//@@@todo!!! - implement index names - flat vector of names, and contraction by named index list
|
||||
|
||||
namespace LA {
|
||||
|
||||
@ -217,8 +216,12 @@ public:
|
||||
inline Tensor contractions( const INDEXLIST &il1, const Tensor &rhs2, const INDEXLIST &il2, T alpha=1, bool conjugate1=false, bool conjugate2=false) const {Tensor<T> r; r.addcontractions(*this,il1,rhs2,il2,alpha,0,true,conjugate1, conjugate2); return r; };
|
||||
|
||||
void apply_permutation_algebra(const Tensor &rhs, const PermutationAlgebra<int,T> &pa, bool inverse=false, T alpha=1, T beta=0); //general (not optimally efficient) symmetrizers, antisymmetrizers etc. acting on the flattened index list:
|
||||
void apply_permutation_algebra(const NRVec<Tensor> &rhsvec, const PermutationAlgebra<int,T> &pa, bool inverse=false, T alpha=1, T beta=0); //avoids explicit outer product but not vectorized, rather inefficient
|
||||
// this *=beta; for I over this: this(I) += alpha * sum_P c_P rhs(P(I))
|
||||
// PermutationAlgebra can represent e.g. general_antisymmetrizer in Kucharski-Bartlett notation
|
||||
// PermutationAlgebra can represent e.g. general_antisymmetrizer in Kucharski-Bartlett notation, or Grassmann products building RDM from cumulants
|
||||
// Note that *this tensor can be e.g. antisymmetric while rhs is not and is being antisymmetrized by the PermutationAlgebra
|
||||
// The efficiency is not optimal, even when avoiding the outer product, the calculation is done indexing element by element
|
||||
// More efficient would be applying permutation algebra symbolically and efficiently computing term by term
|
||||
void split_index_group(int group); //formal split of a non-symmetric index group WITHOUT the need for data reorganization
|
||||
void merge_adjacent_index_groups(int groupfrom, int groupto); //formal merge of non-symmetric index groups WITHOUT the need for data reorganization
|
||||
Tensor merge_index_groups(const NRVec<int> &groups) const;
|
||||
|
Loading…
x
Reference in New Issue
Block a user